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Abstract

This paper introduces an automated technique for con-
structing valid behavior specifications of programs (at the
system call level) that are independent of system vulnerabil-
ities and are highly effective in identifying intrusions. The
technique employs a machine learning method, Inductive
Logic Programming (ILP), for synthesizing first order logic
formulas that describe the valid operations of a program
from the normal runs of the program. ILP, backed by theo-
ries and techniques extended from computational logic, al-
lows the use of complex domain-specific background knowl-
edge in the learning process to produce sound and consis-
tent knowledge. A specification induction engine has been
developed by extending an existing ILP tool and has been
used to construct specifications for several (> 10) privi-
leged programs in Unix. Coupling with rich background
knowledge in systems and security, the prototype induc-
tion engine generates human understandable and analyz-
able specifications that are as good as those specified by
a human. Preliminary experiments with existing attacks
show that the generated specifications are highly effective
in detecting attacks that subvert privileged programs to gain
unauthorized accesses to resources.

1. Introduction

After more than a decade of research, intrusion detection
has been widely adopted as a retrofit solution to the increas-
ingly important problem of computer security. More than
10 commercial intrusion detection systems (IDS) have been
developed and pushed onto the market. All these IDS can at
least reliably detect penetrations that employ known attack
methods, which account for the majority of the attack in-
cidents. Nevertheless, attackers are getting more advanced
and sophisticated. Attackers increasingly make use of auto-
mated scripts to attack systems from different locations in
a short period of time. In addition, they attempt to escape
IDS detection by using new attack methods (e.g., exploiting
a new vulnerability) that are not modeled by the signature

database of the IDS. Real-time detection of previously un-
seen attacks with high accuracy and a low false alarm rate
is needed but remains a challenge.

Current intrusion detection approaches—anomaly detec-
tion, misuse detection, and specification-based detection—
have different strengths towards detecting unknown att-
acks. Anomaly detection, which identifies intrusive activ-
ities based on deviations from a normal behavior profile, is
able to detect unknown attacks as the normal profile is in-
dependent of the system vulnerability. Many different tech-
niques [8, 24, 4, 3, 16] have been employed to establish nor-
mal behavior profiles from historical behavior. The major
difficulty remains to detect intrusions accurately and mini-
mize the false alarm rate. Also, most techniques identify a
procedure for detecting attacks without explaining why the
detected incident is an attack, what went wrong, and how to
fix the problem. Nevertheless, anomaly detection remains a
viable approach to detecting unanticipated attacks.

Misuse detection [7, 12], though widely employed to de-
tect known attacks, also has the potential to detect unknown
attacks [17]. The capability lies in the fact that generic sig-
natures/rules can be written to detect classes of attacks that
have similar manifestations (e.g., buffer-overflow attacks).
In principle, one might be able to hypothesize attacks based
on models of attacks and vulnerabilities (e.g., [13]) and de-
velop generic signatures to detect the attacks. However, lit-
tle research has been done on how to write generic signa-
tures and there is no systematic methodology for developing
generic signatures.

Specification-based techniques [10, 11, 23], which de-
tect deviation of executing programs from their valid pro-
gram behavior, have shown early promise for detecting pre-
viously unseen attacks. Specification-based detection ap-
proaches the problem from a human-reasoning perspective,
trying to develop “formally” what is valid based on the
functionality of the program, its usage, and the system se-
curity policy. The premise is that penetrations often cause
privileged programs to behave differently from their in-
tended behavior, which, for most programs, are fairly regu-
lar and can be written concisely. It can achieve a very low
false alarm rate and be able to explain why the deviation
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is an intrusion. Nevertheless, specifications have to be writ-
ten by system and security experts for every security-critical
program in a system. The specification-based approach will
benefit from techniques that automate the development of
specifications.

In this paper, we present an approach for developing
security specifications of programs in a highly automated
fashion. Our approach employs a machine learning method,
Inductive Logic Programming (ILP) [19], to synthesize first
order clausal theory describing valid operations of a pro-
gram from its historical behavior and background security
knowledge.

ILP, a well-established discipline with a good theoreti-
cal foundation, allows generation of sound and consistent
knowledge that is amenable to formal reasoning. Using
logic as the representation language, ILP can make use
of complex domain-specific background knowledge to pro-
duce intelligent knowledge. Based on the Mode-Directed
Inverse Entailment theory[20], we derived an induction al-
gorithm that is tailored for security and protection. We
implemented the algorithm by extending an existing ILP
tool, Progol [20], which was developed for general purpose
learning. The prototype inductive engine, sProgol, was used
to construct specifications for several Unix programs from
their sample runs. The generated specifications are of very
high quality and are effective in detecting attacks, as con-
firmed by preliminary experiments with existing attacks.

The rest of the paper is organized as follows. Section 2
describes our approach to learning valid behavior specifica-
tions. Section 3 formally defines the learning problem. Sec-
tion 4 presents the learning algorithm together with some
background and theories of ILP that are being applied. Sec-
tion 5 shows the experiments we performed and the results
obtained. Section 6 discusses related research. Section 7
provides conclusions and suggests future work.

2. Learning Specifications from Example Exe-
cutions

Generally speaking, a valid behavior specification of a
program constrains the sequence of operations that can be
performed by the program in execution. To make the prob-
lem tractable, we confine ourselves in this paper to con-
sider learning of the set of valid operations (or accesses)
of a program, ignoring the ordering of the accesses. In
particular, we consider the operations of a program at the
kernel boundary, at which system calls are invoked to per-
form access to objects. Valid access specifications have
been found to be effective in discerning attacks for many
security-critical programs [10].

Informally, a valid access specification of a program
classifies individual operations of the program as either
good or bad. Given example runs of a program consisting

of a set of valid execution traces and a set of possibly empty
invalid execution traces, collected by running the program
on a securely configured host and running it under attacks,
our goal is to construct a valid access specification that sat-
isfies the following criteria.

Completeness: All operations in a valid trace should be
classified as good (or valid).

Consistency: For every invalid trace (or intrusion trace), a
valid access specification should classify at least one
operation as bad (or invalid).

Compactness: The specification should be concise so that
it can be inspected by a human and be able to use for
real-time detection. One simple compactness measure
is the number of rules (or clauses) in a specification.

Predictability: The specification should be able to explain
future execution traces, not producing a high false
alarm rate.

Detectability: The specification should fit closely to the
actual valid behavior and reject future execution traces
which are intrusions.

Completeness and consistency are verifiable criteria
which can be formulated (See Section 3) and checked
against a set of example traces. However, it is more dif-
ficult to definitely evaluate predictability and detectability
of a specification as there could be infinite number of future
valid traces and intrusion traces. Developing a good speci-
fication is not a easy process. It requires significant insight
into the internals of complex applications (e.g, sendmail)
and continual re-analysis as program revisions are released.
Below we discuss some techniques or guidelines for devel-
oping valid access specifications based on our experience,
with an attempt to codify the knowledge in our learning al-
gorithm to achieve better predictablity and detectability.

Least Access To maximize the chance of detecting intru-
sions, a valid access specification should tightly re-
strict the resources that are accessible by a program,
where the resources could include concrete file objects
or abstract network services. One important guideline
is to allow a program to access to only resources that
are needed by the program for accomplishing its jobs.
This is actually a variant of the “least privileged princi-
ple” [22]. In general, we can identify the valid accesses
from the functionality of the program (e.g., described
in the manual pages) and the normal runs of the pro-
gram. In addition, the allowable operations of a pro-
gram may be site-specific, depending on the usage, as
a site may not use all the functions of a program.

2
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Attributes of Operations The validity of an operation
usually depends not only on its type, but also other
parameters such as the attributes of the process which
performs the operation (e.g., process ID, user ID of
the owner of the process), attributes of the object be-
ing accessed (e.g., permission modes), and other ab-
stract state information. It is essential to identify the
attributes which values are needed for distinguishing
intrusions from legitimate behavior and include the rel-
evant attributes in the model so that the attributes will
be considered by the learning algorithm. In general, at-
tributes about the process, system call arguments, the
path name, and the object being accessed are neces-
sary. Also important are the creator of an object, and
the user on behalf of which the program is running.
Attributes that can uniquely identify an object are also
needed.

Generalization In the development of a valid access spec-
ification, an expert usually identifies commonality of
the operations (e.g., having the world-readable permis-
sion bit on) of a program and produces a rule that ex-
plain many operations. Such generalization process
could enhance the conciseness of a specification. Also,
the operations of a program may vary across execu-
tions, depending on the input, configurations, and en-
vironment. Generalization is needed to predict opera-
tions in future executions of programs. For example, in
Unix, a program may use a file-name generation func-
tion to obtain a name for a temporary file, which is dif-
ferent in different executions. It is essential to observe
some characteristics of the temporary files (e.g., they
all share the same prefix) to produce a general rule that
can explain the operations related to the temporary file.

On the other hand, a general rule that explains many
valid operations of a program may also cover many
unnecessary operations. Therefore, it is very impor-
tant to strike a good balance between generalization
and least access and to develop general rules in an in-
telligent manner. For example, even observing that a
program writes to many files in the /etc directory, one
would not use a rule to allow the program to write to
all the files in the /etc directory; it is because such rule
allows the program to write to many security-critical
files that are not needed to be accessed by the program.
A good rule should explain many valid operations but
no invalid operations, and should not cover too many
other high-privileged operations. Therefore, substan-
tial reasoning is involved and extensive knowledge in
system and security is required to produce intelligent
specifications.

3. Problem Definition

In this section we first present a brief background of In-
ductive Logic Programming (ILP). We then define the spec-
ification learning problem formally as an ILP problem. The
terminology commonly used in first order logic is described
in Appendix A.

3.1. Inductive Logic Programming

Inductive Logic Programming has been defined as the
intersection of Machine Learning and Logic Programming
[19]. Loosely speaking, induction logic programming con-
structs knowledge from examples, both represented in first
order logic, by reversing the process of deductive inference.

Deductive inference derives consequences E from a
prior theory C. For example, if C says that all kinds of
birds have wings, E might state that a particular kind of
bird (e.g. a pigeon) has wings. Inductive inference derives
a general belief C from specific beliefs E. After observ-
ing that eagles, pigeons, and sea gulls have wings, C might
be conjecture that all kinds of birds have wings. Inductive
inference is a very common form of everyday reasoning.

Formally, the general problem of ILP is, given back-
ground knowledge B and examples E(E+ [ E�), find the
simplest consistent hypothesis H such that

B ^H j= E

As an example, imagine yourself as trying to learn about
the concept of father. You are given some background
knowledge B about particular parents and their children as
well as with their genders.

B =

8>>>>>>>>>><
>>>>>>>>>>:

male(calvin):

male(timothy):

female(mandy):

female(victoria):

parent(calvin; timothy):

parent(calvin; victoria):

parent(mandy; timothy):

parent(mandy; victoria):

You are now given the following facts, which include the
relationships between particular fathers and their children
(positive examples E+) and the relationships that do not
hold (negative examples E�).

E
+ =

�
father(calvin; timothy):

father(calvin; victoria):

E
� =

8<
:

father(mandy; timothy):

father(mandy; victoria):

father(calvin;mandy):

3
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The goal of ILP is to learn the target relation father from
the given background knowledge B and example E (E+ [

E�). For example, the Progol system is able to learn the
following concept of father.

father(X;Y ) parent(X;Y ) ^male(X)

3.2. Specification Learning Problem

In our problem domain, we model the valid operations
of a program using a set of system-call predicates, each de-
scribing the valid operations associated with one particular
system call (e.g., read, write, execve). In general, an op-
eration performed by a program denotes an execution of a
system call, and is represented by a ground literal (i.e., an
atomic formula without any variables)

scall(t1; t2; t3; � � � ; tn);

where scall 2 SC, the set of system-call predicate sym-
bols, and ti, 1 � i � tn, are terms describing various at-
tributes (e.g., pathname of the object, ID of the process per-
forming the operation) of the operation. (See Figure 1(a)
for examples of operations) A trace of a program execution
is an ordered set of operations performed by the program
execution. If we ignore the order of the operations, we can
view a trace as a set of operations and represent a trace as a
set of ground literals.

Note that the representation of an operation is crucial to
the success of our approach. As mentioned in Section 2,
it is important to include essential attributes of operations
which values can affect the validity of the operations.

Formally, our problem is: given example runs of a pro-
gram consisting of a set of valid trace TV and a set of possi-
bly empty intrusion trace TI , construct a set of Horn clauses
S of the form

scall(a1; a2; � � � ; ai) L1; L2; � � � ; Lj

where scall 2 SC and L1, L2, � � � , Li are literals defined
in the background knowledge B (See Section 4.3 for ex-
amples of background knowledge), such that the following
constraints are satisfied.

B ^ S j= t 8t 2 TV (Completeness) (1)

B ^ S 6j= t 8t 2 TI (Consistency) (2)

The set of Horn clauses S is called a valid access spec-
ification. The set of clauses B ^ P forms a logic program
which defines the relationships among the attributes in a
valid operation of a program. Note that this definition is
slightly different from the ILP problem definition described
in Section 3.1. To cast our problem as an ILP problem, an

example set of valid operations (E+) should be obtained by
including all operations in all valid traces into the set. In
addition, an example set of invalid operations (E�) should
be constructed by selecting at least one invalid operation
from each intrusion trace. Note that not all the operations
in the intrusion traces are invalid; in fact, operations in a
valid trace and operations in an intrusion trace could over-
lap. Therefore, it is important to extract operations that are
truly invalid for inclusion in E�. In general, obtaining a
good set of invalid operations from intrusion traces of a pro-
gram is not an easy process. The lack of attack data further
hinders the problem of getting invalid examples. In view
of this problem, the learning algorithm is designed to work
well with only valid example operations.

4. Induction Algorithm

This section describes the ILP algorithm for construct-
ing a valid access specification from background knowl-
edge and examples. Muggleton [19] regards ILP as a search
problem in which a space of candidate solutions is searched
to find the best solution with respect to some acceptance cri-
terion characterizing solutions to the ILP problem. In prin-
ciple, the problem can be solved using a naive generate and
test algorithm. However, such algorithm is computationally
too expensive to be of practical interest. Therefore, differ-
ent techniques based on different theories [26, 21, 14, 20]
are employed to structure the solution space to allow for
pruning of the search so that a good solution can be found
efficiently. We employ the Mode Directed Inverse Entail-
ment (MDIE) [20] approach to confine and structure the
search space of the solution specifications. We choose this
approach because it matches what we need and the tools
exist on which to base our engine.

4.1. Confining Solution Space using MDIE

This subsection briefly describes the MDIE theory origi-
nally presented in [20] as well as how the theory helps struc-
ture and confine the solutions to an ILP problem. Recall the
general problem of ILP that given background knowledge
B and examples E find the simplest consistent hypothesis
H such thatB^H j= E. If we rearrange the equation using
the law of contraposition we get the more suitable form

B ^ E j= H

Restricting H and E to being single Horn clauses, H
and E will be ground skolemised unit clauses. Let ? be the
conjunction of ground literals which are true in all models
of B ^ E, we have

B ^ E j= ?

4
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(a) An example list of operations produced by the program ping

read(s(657,joe), p(657,0,1), /etc/mtab, f(0,0,19232), m(6,4,4)).
read(s(657,joe), p(657,0,1), /etc/networks, f(0,0,14382), m(6,4,4)).
read(s(657,joe), p(657,0,1), /etc/protocols, f(0,0,1530), m(6,4,4))).
read(s(657,joe), p(657,0,1), /etc/hosts, f(0,0,2534), m(6,4,4)).
read(s(657,joe), p(657,0,1), /etc/spwd.db, f(0,0,1933), m(6,0,0)).

(b) Knowledge synthesized by the Progol system

read(S,P,N,F,M) :- indir(N, /etc).

(c) The desired knowledge constructed by the author with considerations for security

read(S,P,N,F,M) :- indir(N,/etc), worldreadable(M).
read(S,P,N,F,M) :- isfile(N,/etc/spwd.db).

Figure 1. List of Operations Performed by Ping

Since H must be true in every model of B ^ E it must
contain a subset of the ground literals in ?. Hence

B ^ E j= ? j= H

and so for all H
H j= ? (3)

From (3), the complete set of candidate solutions for H
could in theory be found from those clauses that imply the
most specific clause ?. Restricting H to be nonrecursive
clauses, the complete set of solutions could be found from
those clauses which �-subsume ?1. (See Appendix A for
the definition of �-subsume.) Also, the clauses which �-
subsume ? form a sub-lattice with a most general element
2 (empty or false clause) and a least general element ?
[19]. In general, the number of ground literals in ? are
infinite, but it can be restricted by using mode declarations
of the head and body of the hypothesis clause. (A mode for
a predicate is a description of the possible arguments and
their types of a predicate when it is called [20].)

Given the MDIE results, the search for a suitable hypoth-
esis for an example i is reduced to the bounded sub-lattice

2 � H � ?i;

where � denotes �-subsumption, ?i is the most specific
clause that can explain the example i, and 2 is the empty
(false) clause. With appropriate head and body mode decla-
rations, the set of possible hypotheses is further confined
syntactically to rule out nonsense rules to speed up the
search process. Algorithms for generating the most specific
clause ?i from an example i and for enumerating the lat-
tice of clause that �-subsume?i were developed and proved
[20].

1It was illustrated that x j= y not necessary imply x �-subsume y for
self-recursive clauses [19].

4.2. Finding the Best Solution

Besides confining and structuring the search space to al-
low for efficient searching, another aspect of ILP is how to
evaluate the candidate solutions. In particular, there could
be many candidate solutions that satisfy the completeness,
consistency, and compactness criteria. We need to identify
from them the best solution with respect to predictablity and
detectability.

Most ILP tools use similar evaluation criteria, which
identify the best clause as a clause that achieves the highest
compression, that is, the simplest clause that can explain the
largest number of positive examples, without incorrectly ex-
plaining any negative examples. For learning with positive
only data, many ILP algorithms estimate the probability dis-
tribution of positive and negative examples and assume the
positive examples are gathered by drawing randomly from
all the examples and discarding negative examples drawn.
Existing ILP evaluation methods do not apply to our prob-
lem well. We illustrate the limitation of existing ILP algo-
rithms using the example shown in Figure 1. Figure 1(a)
shows an example list of operations produced by the ping
program. The first parameter denotes the identity of the pro-
gram execution, the second parameter denotes the process
which performs the operation, the third parameter denotes
the path name of the object, the fourth parameter denotes
the attributes of the object (e.g., user ID of the owner), and
the last parameter denotes the owner, group and the per-
mission mode of the object. The Progol system synthesizes
the knowledge shown in Figure 1(b), which allows read-
ing of any files inside the /etc directory. (The predicate
indir(F, D) means that the path F is inside the directory
D).

However, from a security perspective, the clause in Fig-
ure 1(b) is not a good rule for explaining the valid oper-
ations because it allows ping to access many unnecessary

5

0-7695-0665-8(C) 2000 IEEE



privileged files in the /etc directory. An attacker gaining
controls of the program could perform these privileged op-
erations (e.g., read /etc/master.passwd, which contains
the passwords of users in plain text) without being detected
by the specification. Therefore, the author chooses other
clauses to explain the examples (Figure 1(c)), which allow
the ping program to read the /etc/spwd.db file and only
files inside the /etc directory that are also publicly read-
able.

4.2.1. Generality and Privilege

We introduce two quantitative measures of a hypothesis
clause: generality and privilege for evaluation of the quality
an hypothesis with respect to security.

The generality of a hypothesis clause measures how
broad are the objects that are allowed to be accessed by
the hypothesis. For example, the generality of read(S,
P, N, F, M) :- worldreadable(M) is high as there
are many files that are publicly readable. On the
other hand, the generality of read(S, P, N, F, M) :-

isfile(N, "/etc/passwd") is very low since there is
only one file whose name is ”/etc/passwd”.

The privilege of a hypothesis clause is a measure of
the privileges of the operations allowed by the hypothesis.
For example, write(S, P, N, F, M) :- own(root,

F) is high as it encompasses many privileged operations
(e.g., write operations to the password file).

Obviously, the more general a hypothesis is, the greater
is its generality and privilege. Any generality function and
privilege function should satisfy this criterion, as described
below.
Definition 1: A generality function g over a set of well-
formed formula (wffs) is well defined if and only if for any
clauses C1 and C2,

C1 j= C2 implies g(C1) � g(C2)

Definition 2: A privilege function p over a set of wffs is
well defined if and only if for any clauses C1 and C2,

C1 j= C2 implies p(C1) � p(C2)

Definition 3: Generality measure. Given a snapshot of a
system consisting of a set of objects O, and let H be a wff,
the generality g of H is

g(H) =
jOH j

jOj
; OH = fOop j B ^H j= opg;

whereOop 2 O denotes the object associated with the oper-
ation op. The function g is well defined because ifH j= H1,
then OH1

� OH by the definitions of OH and OH1
, hence

g(H) � g(H1).

Definition 4: Privilege measure. Let H be a wff and P be
a mapping over the set X of possible operations which as-
signs privilege value from 0 to 1 to every possible operation.
The privilege p of H is defined as

p(H) = max
B^Hj=op;op2X

P(op)

The functions p are well defined. Suppose p(H1) is v,
there exist an operation op such that B ^ H1 j= op and
P(op) = v. If H j= H1, then B ^H j= op, hence p(H) �

p(H1).

4.2.2. Algorithm

Figure 2 shows the algorithm for construction of a valid ac-
cess specification from the background knowledge B and
a set of examples E (= E+ [ E�), which is constructed
from a set of example traces (TV [ TI ) using the method
described in Section 3.

1. Set S = ;

2. if E+
= ; return S

3. Pick an example e from E+

4. Construct clause ? for e

5. Construct clause H from ?

(a) Iterate through the subsumption lattice
starting from the most general clause

(b) find the clause h with highest quality fh
and without covering any negative exam-
ples, i.e., B ^ H 6j= e0 for any negative
example e0

6. Set E0
= fejB ^H j= eg

7. Let S = S [H

8. Set E+
= E+ �E0,

9. Goto 2

Figure 2. Specification Construction Algo-
rithm

The algorithm associates the following values to each of
the candidate hypothesis h.

gh = the generality of h

ph = the privilege of h

ch = the length of the clause h

eh = the explanation power—number of valid
traces which can be partially explained by the
clause h. (A clause partially explains a trace
means that the clause explains at least one opera-
tion in the trace)

fh = eh � (gh + ph + ch)

6
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In the computation, the values gh and ph are normal-
ized to range from 1 to the total number of valid traces.
The value f is set to favor short, low-privilege, and low-
generality clauses but to be able to explain examples in
many traces (high-explanation power). Our goal is to min-
imize the privilege of the hypothesis and to allow just the
operations needed by a program while not making the spec-
ification too complex. In addition, we set the explanation
power eh to be the number of valid traces that can be par-
tially explained by the clause h. That is, eh = jWhj where

Wh = fT j 9 op 2 T s:t: B ^ h j= op; T 2 TV g:

In other general ILP tools, eh is set to the number of
positive examples explained by h. Such setting does not
work well for our purpose since a clause may explain a large
number of operations in one very long trace but may not
explain any operations in other traces.

The algorithm generates a complete and consistent valid
access specification with respect to the given set of example
traces T .
Justification: First, the algorithm will terminate because
examples are taken out from E+ in step 8 in each iteration
and eventually E+ will become empty; note that E 0 in step
6 must at least contain the example e selected in step 3 and
at least e will be taken out from E+ in step 8. Next, for any
valid trace t, all operations in t will be in E+ by the way
E+ is constructed. Each operation in t must be taken out
from E+ in step 8 since E+ is empty when the algorithm
terminates. Therefore, there must be a clause H in S such
thatB^H j= op for each op in t. Hence, the specification is
complete. Last, for each invalid trace t0, there is an invalid
operation op� 2 E� by the way we construct E� from
invalid traces. Every H added to B must satisfy B ^H 6j=
op�. Therefore, B ^ H 6j= t0 for each H added in step 7,
hence the consistency of the specification.

4.3. Implementation

We implemented the induction algorithm by modifying
the Progol tool [20], an existing implementation of MDIE.
Progol contains code for generating the most specific clause
?e from an example e and for iterating through the lattice
of possible solutions which �-subsume?e. In addition, Pro-
gol is able to check for contradiction when a new clause is
added as background knowledge to the system.

The availability of a tool like Progol allows us to im-
plement our algorithm very quickly. We have modified the
code for evaluating the quality of a hypothesis f as de-
scribed in the Section 4.2. In addition, we have modified the
searching algorithm for finding the solution clause from the
lattice of solutions. The prototype (sProgol) accepts an in-
put file containing head and body mode declarations, back-

ground knowledge, and a set of examples to synthesize a set
of Horn clauses that can explain the examples.

Mode Declarations

We use sensible head and body mode declarations to restrict
the terms that appear in the solution. The head and body
mode declarations that are used for learning valid read op-
erations are shown below.

1. :- modeh(*, readop(+subj, +proc, +path,
+fattr, +pmode))?

2. :- modeb(1, group(+subj, +fattr))?
3. :- modeb(1, createdby(+proc, +fattr))?
4. :- modeb(1, createdby(+subj, +fattr))?
5. :- modeb(1, worldreadable(+pmode))?
6. :- modeb(1, groupreadable(+pmode))?
7. :- modeb(1, ownerreadable(+pmode))?
8. :- modeb(1, worldwritable(+pmode))?
9. :- modeb(1, groupwritable(+pmode))?
10. :- modeb(1, ownerwritable(+pmode))?
11. :- modeb(1, isfile(+path, #path))?
12. :- modeb(8, indir(+path, #path))?
13. :- modeb(1, own(+subj, +fattr))?
14. :- modeb(1, own1(#id, +fattr))?

15. id(U) :- int(U), U =< 65535, U >= 0.
16. subj(s(Sid, U)) :- id(U), id(Sid).
17. pmode(m(W,G,O)) :- int(W),int(G),int(O),

W=<7, W>=0, G=<7, G>=0, O=<7, O>=0.

Line 1 declares the mode of readop, which can appear
in the head of the hypothesis. The predicate readop takes
five compound arguments of type subj, proc, path, fattr,
and pmode, describing the program execution, the acting
process, the path to the object, the attributes of the ob-
ject, and the permission mode of the object. Defined on
line 16, subj identifies a program execution, denoted by a
functor s(pid; uid), where pid is the head process ID of the
program execution and uid is the ID of the user who exe-
cutes the program. proc describes a process, identified by
p(pid; euid; egid), which performs the operations.

Lines 2-14 declare the predicates that can appear in the
body of the hypothesis. Most of them are self-explanatory.
The predicate own(S, F) is true if the file F is owned by the
user of S. The predicate own1(I, F) is true if the file F is
owned by the user ID I . We do not include a mode declara-
tion for worldexecutable, groupexecutable, and ownerexe-
cutable because whether a program can read a file should
have no relationship with the executable bits of the file.
Line 15 defines an (process or user) ID as an integer be-
tween 0 and 65535. Line 17 defines pmode, which denotes
the permission mode of a Unix file represented as a triple
of octets. (e.g., The permission mode 644, which indicates
read/writeable by owner and readable by group and world,
is represented as m(6, 4, 4)).

Background Knowledge

The background knowledge contains the definitions of the
predicates that can appear in the body of the hypothesis and
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(a) readop(s(3012,215,20), p(3012,0,20), [’ld.so’,libexec,usr], f(3,7,184332),m(5,5,5)).

(b) readop(A, B, C, D, E) :- worldreadable(E), groupreadable(E), ownerreadable(E),
isfile(C,[’ld.so’,libexec,usr]), indir(C,[libexec,usr]),
indir(C,[usr]), indir(C,[]), own1(3,D).

(c) readop(A, B, C, D, E) :- worldreadable(E).

Figure 3. An Illustration: (a) An example operation, (b) The most specific clause, (c) The selected
hypothesis clause

other knowledge concerned with the state of the system.
For example, the meanings of the predicates worldreadable,
groupreadable, and ownerreadable are given as follows.

worldreadable(m(O, G, W)) :- W >= 4.
groupreadable(m(O, G, W)) :- G >= 4.
ownerreadable(m(O, G, W)) :- O >= 4.

A world/group/ownereadable predicate takes a per-
mission mode, represented by a functor m(O;G;W ),
as an argument and is true if the permission mode is
world/group/ownerreadable.

As another example, knowledge about the creator of ob-
jects is also included.

created(762, 7624, 1123).
created(762, 123, 1345).
created(762, 123, 1346).

The predicate created(A, B, C) specifies that pro-
cess A has created a file with inode number B and gen-
eration number C. In Unix, every file has an unique inode
containing information necessary for a process to access the
file. The example indicates that process 762 has created
three files. Note that the files corresponding to the second
and third statements are different files from a user’s perspec-
tive, but they correspond to an inode with the same inode
number. The inode number alone cannot uniquely identify
a file because inodes can be reused; Systems often choose
the most recently deallocated inode for a new file. Using
both the inode number and the generation number, which is
incremented every time the inode is reused, we can identify
a file uniquely over the lifetime of a system.

Besides the meanings of body predicates and state infor-
mation, another important type of background knowledge
is the generality and privilege of a hypothesis clause. From
Definition 4, the privilege of a hypothesis depends on a priv-
ilege mapping that gives a valid privilege value to each oper-
ation. We use a set of priv statements to define a privilege
mapping that assigns a privilege value from 1 to 10 to each
operation for calculation of privilege values of hypotheses.
Examples of priv statements are:

priv(1) :- readop(S,P,N,F,m(O, G, W)), W >= 4.
priv(9) :- readop(S,P,N,f(0,G,I),m(O,G,W)), W < 4.
priv(10) :- readop(S,P,[spwd, etc],F,m(6,0,0)).

The body of a priv statement denotes a set of opera-
tions, for example, the first priv statement denotes all read
operations on a publicly readable file. Given an operation
op, the privilege of op is the largest i such that priv(i) is
true for the operation op. sProgol computes p(H) based on
the privilege mapping defined by a set of priv statements.
In this example, the privilege of the clause readop(A, B,

C, D, E) :- isfile(C, [spwd, etc]) is 10.
To calculate the generality of a clause, we use a very

simple scheme that assigns a generality value to a clause
based on the terms that appear in the body of the clause.
We associate a generality value from 1-10 to each predicate
symbol that can appear in the body of an hypothesis. Ta-
ble 1 shows the value of each symbol. The generality of
a clause is calculated based on the terms in the body of the
clause. The generality of a hypothesis get the smallest value
of the terms that appear in the body of the hypothesis. For
example, the generality value of readop(A, B, C, D, E) :-
isfile(C, [passwd,etc]), worldreadable(M) is 1.

Clause Generality Value
indir(X;D); jDj < 5 9� jDj

indir(X;D); jDj >= 5 4
worldreadable(M) 5
groupreadable(M) 5
ownerreadable(M) 5
owner(X;Y ) 4
isfile(X;Y ) 1
createdby(X;Y ) 1

Table 1. Generality Value

An Illustration

Figure 3(a) shows an example positive operation e and 3(b)
the most specfic clause ?e computed by sProgol. sProgol
searches for the best solution starting from the most general
clause readop(A,B,C,D,E) to find the solution with the
highest g value (Figure 3(c)). sProgol prunes the solutions
that do not make sense or are redundant. For example, at
most one indir term in the clause is allowed.
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In constructing the valid access specification of a pro-
gram, the hypothesis for each relevant system call is gener-
ated separately. Currently, we have developed background
knowledge for learning the security specifications for seven
system calls: read, write, chmod, chown, creat, unlink, ex-
ecve. A rename operation to an existing destination file is
treated as an unlink operation on the source file followed by
a write operation to the destination file.

5. Experimental Results

To test the validity of our approach, we have used sPro-
gol to synthesize the valid access specifications for over 10
privileged programs in FreeBSD Unix, version 2.2.2. The
traces of normal program execution were obtained using the
Generic Software Wrapper Toolkit [5], which allows us to
intercept the operations of processes at the kernel bound-
ary and collect the relevant information about the opera-
tions. As a result, we are able to obtain valuable information
that is not available from traditional audit trails (e.g., read
and write operations, generation number of an inode). We
have collected normal data for the programs and used the in-
duction engine to construct specifications for the programs.
The collected data is first preprocessed to 1) generate back-
ground knowledge concerned with what files do processes
create and the parent child relationship between processes
and 2) to translate the operations into a form as described in
Section 3. Figures 4 and 5 show the generated specifications
for lpr and passwd.

readop(A,B,C,D,E) :- worldreadable(E).
readop(A,B,C,D,E) :- isfile(C,[’spwd.db’,etc]).
readop(A,B,C,D,E) :-

isfile(C,[’.seq’,lpd,output,spool,var]).
readop(A,B,C,D,E) :- createdby(A,D).

writeop(A,B,C,D,E) :-
isfile(C,[’.seq’,lpd,output,spool,var]).

writeop(A,B,C,D,E) :- createdby(A,D).

creatop(A,B,C,D,E) :-
indir(C,[lpd,output,spool,var]).

chownop(A,B,C,D,E) :- createdby(A,D).
unlinkop(A,B,C,D,E) :- createdby(A,D).

Figure 4. Generated Specification for lpr

We have tested the specifications using some existing att-
acks, in particular, an attack to imapd [1] and an attack to
lpr [2]. The generated specifications were translated into
wrappers that intercept the system calls made by the pro-
grams to check for deviations. The translation was done
manually, but it can be automated very easily. The gener-
ated specifications of imapd and lpr are able to detect both
attacks. Table 2 summarizes the information about the gen-
erated specifications. The generated specifications are as
good as the specifications developed by a human expert. In

readop(A,B,C,D,E) :- worldreadable(E).
readop(A,B,C,D,E) :- isfile(C,[’spwd.db’,etc]).
readop(A,B,C,D,E) :-

isfile(C,[’master.passwd’,etc]).
readop(A,B,C,D,E) :- createdby(A,D).

writeop(A,B,C,D,E) :- own(A,D).
writeop(A,B,C,D,E) :- isfile(C,[tty,dev]).
writeop(A,B,C,D,E) :- createdby(A,D).
writeop(A,B,C,D,E) :- isfile(C,[’pwd.db’,etc]).
writeop(A,B,C,D,E) :-

isfile(C,[’spwd.db’,etc]), own1(0,D).
writeop(A,B,C,D,E) :- isfile(C,[passwd,etc]).
writeop(A,B,C,D,E) :-

isfile(C,[’master.passwd’,etc]).
creatop(A,B,C,D,E) :- indir(C,[etc]).
chownop(A,B,C,D,E) :- createdby(A,D).

Figure 5. Generated Specification for passwd

addition, they can be inspected and are understandable by a
human.

6. Related Work

Substantial amount of research has been done trying to
construct profiles or rules from normal examples that can
distinguish normal and intrusion behavior. Early work fo-
cuses mostly on modeling behavior of users, whose behav-
iors are highly irregular and depend greatly on the environ-
ment. IDES [18] employs a statistical approach to profile
the normal behavior of users and treats behavior that sig-
nificantly deviates from the normal profiles as intrusions.
The Time-based Inductive Machine (TIM) [24] inductively
generates time-based rules for characterizing normal behav-
ior patterns of users. It focuses on the sequential relation-
ship between operations and incorporates some probabilis-
tic measurements into the algorithm (For example, after ob-
serving E1 followed by E2, the probability of seeing E3 is
90%). Wisdom and Sense (W&S) [25] attempts to generate
a tree-structured rule forest for describing historical behav-
ior patterns of users. The rules specify normal feature val-
ues conditioned on the values of other features. However,
the rule base tends to be very large (104 to 106), as opposed
to the size of our specifications, which is on the order of 10
to 20 clauses.

Recently, researchers focus more on modeling the nor-
mal behavior of programs, which is more regular than be-
havior of users. In [4, 3], short sequences of system calls
are used as discriminators to differentiate legitimate behav-
ior and intrusions. In addition, data mining techniques [15]
and other Artificial Intelligence techniques such as neural
networks [6] are used to search for the best set of rules or
procedures, from a given set of normal data and a set of
intrusion data, that can best distinguish legitimate behavior
and intrusions. In [9], a simple file name translation scheme
is used to model normal file access patterns of programs for
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Program No. of Executions No. of operations Specification Length
fingerd 10 826 3

lpr 9 498 9
ftpd 8 2181 7

passwd 11 1653 14
sendmail 8 5483 10

imapd 6 10957 11
at 6 346 9
atq 10 415 2

Table 2. Data about Generated Specifications.

detecting Trojan Horses.

Our approach is different from these approaches in sev-
eral ways. First, our approach employs techniques in Induc-
tive Logic Programming to construct declarative knowledge
instead of a set of procedures that does not have any contex-
tual meaning. The constructed knowledge is represented in
a simple logic notation that is understandable by humans
and amenable to formal analysis. Also, the generated spec-
ifications are concise and can be checked by humans.

Second, we monitor executions of programs at the sys-
tem call level and include many security-relevant attributes
pertaining to the operations in the analysis. The generated
specification describes the relationship among attributes of
the operations in a valid execution. At the system call level,
the set of operations and their attributes are well defined and
accesses to resources must be done by making system calls.
In addition, we do not start off restricted by the information
available in the audit trails. It is very difficult to achieve
high detection accuracy with insufficient data. Instead, we
identify attributes of a program execution that are useful in
discerning attacks and include them in our learning model
(e.g., we use both inode and generation number to uniquely
identify a file).

Last, we incorporate substantial background knowledge
on systems and security (e.g., privilege and generality val-
ues) in the learning process to produce intelligent specifica-
tions. We strongly believe that extensive security knowl-
edge is needed for learning algorithms to produce good
specifications or procedures for discerning attacks. The best
procedures for detecting attacks with respect to a set of ex-
amples may not be the best detection procedures in real life,
if the examples is not comprehensive, which is currently the
case for intrusion data. By incorporating extensive back-
ground knowledge in our algorithm, we highly believe that
our approach generates specifications that are of high qual-
ity with respect to the examples, but also to real situations.

7. Conclusions and Future Work

This paper presents an innovative approach to construct-
ing valid behavior specifications that can be used to reli-
ably detect intrusions related to misuse of privileged pro-
grams. Our approach employs Inductive Logic Program-
ming to construct valid access specifications of programs
from normal runs for detecting intrusions. The constructed
specifications are represented in first order logic. Our ap-
proach inherits the benefits of both specification-based de-
tection and anomaly detection. First, formal and analyzable
specifications are used for discerning attacks accurately and
efficiently. Second, rules for detecting intrusions that are in-
dependent of system vulnerabilities are generated automat-
ically from the normal runs of a program with little manual
intervention.

Using the theories and techniques in ILP, the specifica-
tion construction problem is transformed into a search prob-
lem and a quality measurement problem. We derived an
induction algorithm based on an existing MDIE algorithm
that intelligently confines and structures the solution space
for efficient searching. We have developed a new way to
evaluate the quality of a solution hypothesis that incorpo-
rates knowledge on system security. We developed an in-
duction engine and synthesized many specifications of pro-
grams. Guided by a rich set of background knowledge,
the induction engine generalizes program runs into Horn
clauses that are guaranteed to explain all existing examples
and reject all attack examples. In addition, the synthesized
specifications are concised and are as good as those speci-
fied by human experts. As illustrated by the preliminary ex-
periments, the generated specifications are effective in accu-
rately detecting attacks, with a low false alarm rate. Our ap-
proach is effective in detecting Trojan Horses and program
subversions such as buffer overflows or exploitations of race
conditions without specific knowledge about the vulnerabil-
ities. Nevertheless, our approach is not designed to detect
probing attacks as well as denial-of-service attacks.

Our experiments and testing of our approach are prelim-
inary and by no means comprehensive. Therefore, more
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comprehensive testing, with more programs, extensive ex-
amples, and more attacks is needed in the future to truly
evaluate the effectiveness of our approach. In addition, lay-
ered ILP learning techniques can also be applied to improve
initial specifications as more examples are given. Further-
more, as the generated specifications are expressed in an
analyzable form, more reasoning about the specifications
with respect to their ability to protect a system can be done
to choose the best set of specifications. For example, these
questions can be studied: 1) is the specification tight enough
to detect majority of attacks, 2) how to compare two speci-
fications, and 3) given the specifications of many programs,
what implication do they have at the high level. Also, we
need to study how to generate specifications for some com-
plex programs (e.g., Microsoft Word) that are designed to
accomplish a wide variety of functions. In particular, the
specifications should model the ordering of important op-
erations of programs. Last, our approach can be applied to
learn valid behavior of network protocols or services.
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A. Definitions from logic

A variable is represented by an upper case letter followed by
a string of lower case letters and digits. A function symbol is a
lower case letter followed by a string of lower case letters and
digits. A predicate symbol is a lower case letter followed by a
string of lower case letters and digits. A variable is a term, and a
function symbol immediately followed by a bracketed n-tuple of
terms is a term. Thus f(g(X); h) is a term when f , g and h are
function symbols and X is a variable. As in Prolog, integers, ’[]’
and ’.’ are function symbols and if t1, t2, ... are terms then ’.’ (t1,
t2) can equivalently be denoted [t1, t2] and ’.’(t1,’.’(t2,..’.’(tn,[])..))
can equivalently be denoted [t1, t2, .., tn]. A predicate symbol
immediately followed by a bracketed n-tuple of terms is called an
atomic formula, or atom. Every atom is a well-formed formula
(wff). If W and W 0 are wffs then W (not W ), W ^W 0 (W and
W’), W _ W 0 (W or W’), and W  W 0 (W implied by W 0)
are wffs. If v is a variable and W is a wff then 8v:W (for all
v W) and 9v:W (there exists a v such that W ) are wffs. The
wff W is said to be function-free if and only if W contains no
function symbols. Both A and A are literals whenever A is an
atom. In this case A is called a positive literal and A is called
a negative literal. A set of literals is called a clause. The empty
clause is represented by 2. A clause represents the disjunction of
its literals. Thus the clause fa1; a2; � � � ; ai; ai+1; � � � ; ang can be
equivalently represented as (a1 _ a2 _ ::ai _ ai+1 _ � � � _ an)
or a1; a2; � � �  ai; ai+1; � � � an. All the variables in a clause are
implicitly universally quantified. A Horn clause is a clause which
contains at most one positive literal. A definite clause is a clause
which contains exactly one positive literal. A positive literal in
either a Horn clause or definite clause is called the head of the
clause while the negative literals are collectively called the body
of the clause. A set of clauses in which no pair of clauses share a
common variable is called a clausal theory.

A clausal theory represents the conjunction of its clauses. Thus
the clausal theory fC1; C2; � � � ; Cng can be equivalently repre-
sented as (C1 _C2 _ � � � _Cn). Every clausal theory is said to be
in clause-normal form. The process of replacing (existential) vari-
ables by constants is called skolemisation. The unique constants

are called skolem constants. A set of Horn clauses is called a logic
program. Let E be a wff or a term. vars(E) denotes the set of
variables in E. E is said to be ground if and only if vars(E) = ;.

Let � = fv1=t1; � � � ; vn=tng. � is said to be a substitution
when each vi is a variable and each ti is a term, and for no distinct
i and j is vi the same as vj . The set fv1; � � � ; vng is called the do-
main of �, or dom(�), and ft1; � � � ; tng the range of �, or rng(�).
Lower-case Greek letters are used to denote substitutions. Let E
be a wff or a term and Let � = fv1=t1; � � � ; vn=tng be a substitu-
tion. The instantiation of E by �, written E�, is formed by replac-
ing every occurrence of vi in E by ti. Atom a �-subsumes atom
b, or a � b, if and only if there exists a substitution � such that
a� = b. Clause C �-subsumes clause D, or C � D, if and only
if there exists a substitution � such that C� � D. The Herbrand
universe of the wff W is the set of all ground terms composed of
function symbols found in W . The Herbrand base of the wff W
is the set of all ground atoms composed of predicate and function
symbols found in W . An interpretation is a total function from
ground atoms to fT; Fg. Interpretation M is a model of wff W if
and only if W is true in M . We say that W semantically entails
W 0, or W j= W 0 if and only if every model of W is a model of
W 0.
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