
An Extensible Environment for Evaluating Secure MANET

Yongguang Zhang
HRL Laboratories, LLC

ygz@hrl.com

Yi-an Huang
Georgia Institute of Technology

yian@cc.gatech.edu

Wenke Lee
Georgia Institute of Technology

wenke@cc.gatech.edu

Abstract

Developing and evaluating secure MANET (mobile ad-
hoc networks) in real systems is a complex process that in-
volves careful design of attack test cases and security coun-
termeasures, as well as meaningful performance measure-
ments to evaluate both the impact of attacks and the per-
formance of security solutions. It is desirable to have a de-
velopment and testing environment that can automate this
process. In this paper, we propose a software framework
for such an environment and describe a system implemen-
tation in the secure MANET routing domain. This environ-
ment includes the following three major features. First, the
environment is built upon a wireless network emulation tool
to support repeatable experimentation. Second, it adds an
attack emulation layer with necessary API for easy devel-
opment and execution of attack test cases. Third, the ex-
tensible attack library includes a full set of basic attacks
at its core and a way to compose complex attacks from the
atomic elements. To demonstrate the usefulness of this tool,
we show the development of an Intrusion Detection System
(IDS) as a case study. Our successful experience confirms
that the platform can greatly facilitate the development of
security solutions on MANET.

1. Introduction

The history of security research and practice has taught
us that security is an on-going process and any secure sys-
tem should undergo rigid test and re-test with carefully
designed attack test cases. Securing Mobile Ad-hoc Net-
works (MANET) should also follow this process and it is
extremely important to evaluate secure MANET software
in real systems and under real attacks.

Like any security system, a thorough evaluation of se-
cure MANET software requires a cycle of four steps (Fig-
ure 1). First, we must understand application objectives
because the ultimate test of success for a secure MANET
is how well the MANET application achieves its designed
mission goal in spite of threats and attacks. This application

Measurement

and Evaluation

Development

Test c
ase

Experim
entation

U
nd

er
sta

nd
in

g

A
pp

lic
at

io
n

Figure 1. The Circle of Securing MANET

understanding will help us design experiments, including
the choice of test cases and evaluation models. In test case
development, we need to come up with a set of carefully de-
signed attack scenarios. Much like other testing in software
engineering disciplines, this should come after an extensive
analysis of the potential threats to MANET objectives and
the set of test cases should cover these threats extensively.
Systematic approaches like attack taxonomy [7] can be used
here in secure MANET test case development.

Next, secure MANET should be evaluated through ex-
perimentation. Unlike simulation, actual experiments can
allow both the actual application and security codes to run
in the same condition as in actual deployment. When the
attack test cases are injected into the experiment to create
real intrusions, the behavior of the secure MANET system
can be observed and studied in face of these attacks. Fur-
thermore, meaningful measurement and evaluation can be
conducted to gain qualitative and quantitative assessments.

Our past experience has also taught us that this process is
non-trivial and time-consuming, and it is desirable to have
software tools and environments to automate and facilitate
some of the tasks. Although there are some such tools avail-
able for wired networks (such as LARIAT [11, 12]), little
work has been done in the wireless domains and to the best

of our knowledge no such secure MANET testing systems
exist in the open literature.

The goal of this research is to develop such environ-
ment as an experimentation platform for evaluating secure
MANET. Given the potentially large amount of test cases
and MANET scenarios, this platform should support repro-
ducible experiments and posses the ability to inject attacks
(test cases) automatically during an experiment. Further,
this platform should provide easy programming support for
test case development, and a way to organize attack test
cases in an extensible repository.

We have developed a software system that meets the
above goal. In the rest of this paper, we will describe the
software architecture and explain each major components
in details. Especially, we will focus on the methodology
and practice of attack emulation in Section 4 and 5. As a
case study, we have used this environment in our research,
specifically in the development of an Intrusion Detection
System (IDS) for MANET. We will report this experience
in Section 7.

2. Architecture

We have developed such a software platform to facil-
itate the security development and evaluation that meets
the above goal. Architecture-wise it includes the following
components:

� A network emulator to provide a high-fidelity commu-
nication environment for repeatable and scalable mo-
bile ad-hoc network experiments. This will allow us
to test real security code in real applications and real
systems. The emulation of underlying communication
environment will allow us to test security in a wide
range of different scenarios and mobility patterns.

� An attack emulation system that is capable of inject-
ing attack test cases during the experiments. It installs
hooks in certain MANET components and provides a
programming abstraction (an API) so that researchers
can write attack logics in a way independent from the
actual MANET implementations. This is particularly
useful because there can be a large number of test
cases and it is impractical to modify a huge number
of MANET components to implement each test case.

� An extensible repository for test cases. The attack li-
brary should have the structure to organize all the test
cases and make it easily extensible to accommodate
future attacks. Based on the results of attack taxon-
omy study [7], all attacks in MANET can be composed
from a set of basic attacks or other compound attacks.
We should therefore provide an object-oriented hierar-
chy in the repository to organize the test cases, to assist

attack composition into more complex attacks, and to
make it easy to add new atomic or compound attacks.

� A collection of instrumental, measurement, and data
analysis tools to measure the effectiveness and perfor-
mance of the security solution in the experiments. This
includes tools to log traffic and security-related events,
tools to observe the state of the network, and finally,
tools to assess the effectiveness of the attacks and the
state of the applications.

2.1. Rationale for the Emulation Approach

The evaluation of secure MANET must be under a real-
istic MANET environment. Although simulation tools like
ns-2 [1] and QualNet is widely used for other MANET re-
lated experiments, they are not very suitable for this pur-
pose. First, they do not have real applications and thus at-
tacks on application level cannot be easily ported and eval-
uated. Second, it is impractical to obtain real and meaning-
ful measurement data in a simulation platform. And most
importantly, the security of a real system should only be
evaluated with the real system and not on a simulated one.

The experimental environment should also be repro-
ducible because this is important in exploring design space
and evaluating alternatives. A full-blown test with real wire-
less hardware may not be repeatable because it is difficult
to reproduce the extra wireless communication environment
and it can be too costly to try a wide range of mobility sce-
narios [15]. Comparatively, the emulation approach has the
advantage of both. We therefore believe that emulation is
the right approach for experiment with real applications and
real systems and yet be faithful to the actual communication
environment (MANET).

2.2. S-MobiEmu

We have implemented this platform in a software sys-
tem called S-MobiEmu, using ad-hoc routing as an exam-
ple application domain and intrusion detection as a security
solution case study. Figure 2 illustrates the software com-
ponents and their relationship with respect to the security
solution being studied.

To support reproducible experiments, we build upon a
publically available wireless network emulator called Mo-
biEmu [15]. We add an attack emulation layer, called Basic
Ad-hoc Security Routines (BASR), as a common abstrac-
tion layer for attack injection and for test case development.
The test case repository is implemented as an attack library,
which extends from a core foundation library consisting of
a full set of basic attacks. The repository is extensible as
complex attacks can be constructed using existing attacks
as building blocks. Initially, we have included several such

Routing Agents
−UIUC
AODV ...
helper helper helper

Network
Emulation

Library
Foundation

Complex
Attacks

API

BASR layer

Attack Library

MobiEmuco
nt

ro
l &

 c
oo

rd
in

at
io

n

tr
ac

es
 &

 in
st

ru
m

en
ta

l d
at

a

Measurement
Tools

IDS

Security
Solutions

Figure 2. S-MobiEmu Software Architecture

well-known complex attack scenarios. Finally, a set of mea-
surement tools are also provided in a performance measure-
ment toolkit. Since functionwise this can be considered as
an extenstion to MobiEmu, we call it S-MobiEmu, with “S”
meaning security.

3. Emulating MANET

The network emulation system in S-MobiEmu is based
on MobiEmu [15] – a software tool for testing “live”
MANET systems in a laboratory setting. MobiEmu uses
a cluster of � linux machines to emulate a MANET of

� nodes (see Figure 3). Although these testbed hosts are
physically well-connected, the packet delivery behavior has
been modified at the network device layer to generate the
effect of real-world wireless communications and network
dynamics. With MobiEmu, MANET software can be tested
under the same wireless communication characteristics and
networking environment as if it were running in a real
MANET deployment.

MobiEmu experiments are driven by predefined network
scenario, which is expressed in a history of node motions
and link characteristics changes. The node motions can de-
termine current connectivity topology, and the link charac-
teristics include bandwidth, delay, bit-error-rate, and loss
rate. MobiEmu software enforces the topology and link
characteristics by setting proper packet filtering and queu-
ing rules at the device driver layer.

The MobiEmu system operates in a master/slave archi-
tecture. The master controller runs at a dedicated host out-
side the testbed network; a slave controller runs at each
testbed host. The master controller controls all slaves
and synchronizes their actions: the master dictates when

testbed
host

testbed network

master
ctrlr

control channel

testbed
host

testbed
host

testbed
host

testbed
host

testbed
host

net dev net dev net dev net dev net dev net dev

test subject: ad-hoc network
implementation (system and/or
application software) running on …

…

Figure 3. Emulating MANET with MobiEmu

changes (to topology and link characteristics) are needed
according to the scenario and instructs the slaves to enforce
such changes. The master/slave communication is on a sep-
arate control channel, which may be overlay on the testbed
network if the overall load is low.

There are many benefits of using MobiEmu to evalu-
ate secure MANET. First, all networking and above is real
in MobiEmu, meeting our requirements to run experiments
with actual secure MANET code. Second, since the com-
munication effects are emulated, these experiments are re-
producible. And third, since MobiEmu allows we run a
wide range of MANET scenario without the need to physi-
cally move the nodes, we can easily repeat the experiments
for a large set of test cases. Our experience of using Mo-
biEmu in secure MANET research has further validated
these points.

We have therefore use MobiEmu as the basis of our S-
MobiEmu platform. To run experiments, secure MANET
software (i.e., the test subject) will be loaded in each testbed
host and run as if it were in a real deployment. S-MobiEmu
accepts all MobiEmu scenarios, although not all attack test
cases would make sense in all network scenarios. MobiEmu
master controller has been extended to control and coordi-
nate with attack emulation so that both network emulation
and attack emulation are in sync.

4. Attack Emulation

The attack emulation layer in S-MobiEmu provides the
means to test the security aspect of the MANET system
running in MobiEmu. It interacts with each node’s soft-
ware stack to inject the effects of a network under attacks.
For example, if a MANET attack aims at compromising a
node’s routing agent and falsifying its route table, the at-
tack emulation layer will instruct the routing agent to make
such alteration in its route table as if it were indeed compro-
mised. Then, the whole system can be put under test to see
how it responds to such route alteration event.

4.1. The BASR Layer

The software layer that implements the attack emulation
layer is called BASR (Basic Ad-hoc Security Routines). It
consists of a set of “helper” modules that implement a li-
brary of convenient security routines and a common API
for attack test cases (see Figure 2). Currently, BASR is de-
signed for ad-hoc routing although it is extensible to support
other application domains.

The purpose of BASR is to isolate the implementation of
attack test cases and security systems from the routing pro-
tocol code as much as possible. In real network security sce-
narios, routing agents can be compromised and driven into
running malicious codes. Implementing attacks or counter-
measures to such attacks often requires modification of the
routing agents. It is obviously inconvenient and error-prone
to modify the routing agents every time a new possible at-
tack is studied. Instead, the BASR layer abstracts the most
common security routines into a common API to expedite
the design of attack cases and security systems, thus mini-
mizing direct code-injection into the routing agents.

The implementation of these “helper” modules is obvi-
ously routing protocol and implementation dependent. It is
indeed necessary to modify route agent source code to im-
plement the security functions provided by the API. That
is, each instance of routing protocol implementation should
be paired with an instance of the helper module as illus-
trated in Figure 2. So far, we have implemented a BASR in-
stance for AODV-UIUC [9], a public implementation of the
AODV routing protocol. Further implementation on other
protocols, such as DSR, is currently under development.

4.2. API Details

BASR supports the following three types of common
routines:

1. Capturing and intercepting incoming and outgoing
packets – the pcap [8] library is used to capture net-
work packets, including both data packets and routing
messages.

2. Overhearing traffic in neighboring nodes – wireless in-
terface is put in the promiscuous mode to monitor traf-
fic in the proximity of this node.

3. Access to routing table entries – routing table en-
tries that usually reside internally to routing agents are
made available in a shared memory block.

Here are the function prototypes of these common APIs:
�

register_callback(bool incoming, int type,
addr_t src, addr_t dst, func callback);

This function creates a packet-matching rule and asso-
ciates it with the given callback function. The call-
back function will be called, when a packet is re-
ceived (when incoming value is true) or sent (when
incoming value is false) at the wireless interface
matches the given source, destination and protocol
type. Protocol type can be specified as TCP, UDP,
RREQ, RREP, RERR, etc., or bitwise-ORs of them, such
as TCP|UDP. Source or destination address can be any
IP address or wildcards. The callback function has the
following form:

int callback(addr_t src, addr_t dst,
void * data, int len);

Sequential calls of this API (possibly from different
processes) will register a chain of callback functions
that will be invoked in the reversed order of registra-
tions.

�
register_overhear_callback(int type,

addr_t src, addr_t dst, func callback);

This function registers a callback function similar to
the previous one, but it matches only those packets
that are overheard in the neighborhood. The callback
function takes an additional parameter that specifies
the particular neighbor from which the packet is over-
heard.

�
rentry * read_route_entry(int dst);
write_route_entry(int dst, rentry * new_rentry);

They provide read and write access to the routing ta-
ble entry (rentry) corresponding to the given destina-
tion. The rentry structure includes fields essential to
the routing protocol, such as destination, next hop (or
source route), hops and sequence number, etc.

�
rentry * read_local_entry();
write_local_entry(rentry * new_rentry);

They provide the interface to read and modify informa-
tion of the host node itself. The interfaces are similar to
the read_route_entry and write_route_entry.

4.3. An Example Attack Written in the API

We now use a simple example to demonstrate how we
can use the API to program attack test cases. Let us assume
a possible attack scenario: an attacker Malice tries to eaves-
drop in communication from Alice to Bob. Let us assume
they reside on nodes M, A and B respectively. Malice can
achieve the goal by several means. The simplest approach
(Approach I) is to intercept all traffic from A to B on the
local interface of M. It only works when M is in the route
path from A to B. The second approach (Approach II) im-
proves by overhearing nearby traffic as well. It works when

there is at least some of M’s neighbors resides in the inter-
ested route path. The most aggressive approach (Approach
III) tries to proactively advertise a new route from A to B
that contains M. Thus, no matter where Malice resides, it
may always intercept the expected communication. Section
5.2 will describe the detailed technique to advertise a false
route, briefly, a Route Request message is fabricated and it
contains falsified originator and target fields, namely, B and
A. By manipulating sequence number fields in the message,
all nodes who receive the request will forward the message
to other nodes. As a side effect, they will also update their
route to B (the originator) via M (the previous hop). Even-
tually, A will also receive the message and update the route
path to B accordingly, which contains M.

The following pseudo code segment illustrates how we
can implement these three approaches with the BASR li-
brary. We assume that disclose_data() is a callback
function that attempts to extract useful information from
an intercepted data packet, and the function broadcast()

broadcasts a packet. Here we provide a simplified RREQ
structure only for demonstration purposes.

Eavesdrop_Approach_I(addr_t A, addr_t B)
{

BASR::register_callback(true, TCP|UDP, A, B,
disclose_data);

}

Eavesdrop_Approach_II(addr_t A, addr_t B)
{

Eavesdrop_Approach_I(A,B);
BASR::register_overhear_callback(TCP|UDP, A, B,

disclose_data);
}

struct RREQ {
addr_t src; // the originator
addr_t dst; // the target
int src_seq;
int dst_seq;
addr_t ip_src; // the forwarder

};

Eavesdrop_Approach_III(addr_t A, addr_t B)
{

Eavesdrop_Approach_I(A,B);
addr_t M=BASR::read_local_entry()->dst;
int aseq=BASR::read_route_entry(A)->seq;
int bseq=BASR::read_route_entry(B)->seq;
RREQ rreq(B, A, bseq+1, aseq+1, M);
broadcast(rreq);

}

5. Attack Library

The Attack Library in S-MobiEmu is a well-organized
and extensible collection of carefully designed attacks and
test cases. It also provides the structure to assist researchers
in developing new test cases in a new study.

The attack library organizes attacks and test cases in a
hierarchy structure based on their composition. The core
of the attack library is a collection called Attack Foundation
Library, which contains all the atomic attacks that define the

basic attack behavior on a single node. These attacks can
be used as building blocks to construct compound attacks
or complex test cases. These more sophisticated attacks can
also span over multiple nodes.

5.1. Methodology

The attacks included in attack library are used as test
cases to test the security aspect of a MANET system. It
is therefore very important that we carefully design and
choose the set of test cases. Here, we use a methodology
called attack taxonomy.

General attack taxonomy can be used to design test
cases. Although each application environment has a dif-
ferent threat model, it is important to study a general attack
taxonomy that can serve as a starting point for analyzing
application-specific attack scenarios. For this purpose, we
adopt the attack taxnomy developed in [7]. It is based on the
goals of the attackers, that is, what the attackers aim to ac-
complish. Based on the taxonomy, we can enumerate pos-
sible basic attacks. By basic attacks, we mean action blocks
that cannot be divided further, for instance, the delivery of
a data packet or a reply to route request. In contrast, other
attacks are compound attacks that are composed of a num-
ber of basic attacks and even some atomic normal actions.
Therefore, even if we cannot enumerate (or anticipate) all
possible attacks, our claim is that they must be built based
on one or a few basic attacks, and therefore it is possible to
develop security countermeasures for unknown attacks as
well.

We now explain how we build the attack taxonomy for
ad-hoc routing [7]. First, routing is viewed as a process in-
volving causally related operations from a number of nodes.
Any routing process can be decomposed into a series of ba-
sic routing events. A basic event is defined as the small-
est set of causally related routing operations on every node.
Note that a basic event may involve delivering or receiv-
ing one or multiple network packets. A series of network
operations is identified as a single normal basic event only
when they are conducted in a transactional fashion speci-
fied by the protocol logic. Otherwise, they are considered
an anomalous basic event.

Then, an anomalous basic event can be classified from
two dimensions, its target and operation. The routing be-
havior of MANET typically involves three elements that
are also the targets for adversaries: routing messages, data
packets, and the routing table. The possible attack opera-
tions on these targets can be identified by examining the fol-
lowing well-known security goals: confidentiality, integrity,
and availability.

Next, we choose basic attacks that correspond to each
category of anomalous basic events. We take a realistic
view to implement only those basic attacks that are (cur-

rently) meaningful.

� Attacks on confidentiality: can be performed on data
packets, routing messages and routing table entries.
The data compromise expects to disclose confiden-
tial data, which only the source and destination nodes
should have been able to access. However, information
in routing messages is, by its essence, publicly accessi-
ble since every node may potentially benefit from the
information for further routing decisions. In the first
glance, the lack of confidentiality in routing messages
appears to be harmless. However, [2] pointed out that
routing information can be used to disclose location
information about other nodes, which is crucial in, for
example, a military scenario. Similar argument also
applies for the confidentiality of routing table entries.

� Attacks on integrity: can also be performed on all tar-
gets: data packets, routing messages, and routing table
entries. In general, [7] enumerates possible compro-
mise operations in this category: fabrication, modifi-
cation and removal. Here integrity compromise has a
more general meaning: not only the compromise of the
data integrity, i.e., modification of fields in an existing
element, but also of the integrity of normal program
logic (which includes fabrication of new elements and
removal of old elements). Furthermore, there are two
meaningful variations of “modification” when we im-
plement modification of routing messages: on its con-
tents, and on its deliver frequency (The rushing attack
described [5] is such an example). Rushing attacks are
typically not meaningful on data packets and thus we
do not list them separately.

� Attacks on availability. One of the most common
and well-known availability compromises is flooding,
which is implemented by sending huge amount of traf-
fic of data packets and routing messages that exceeds
the normal traffic processing capacity by targeted vic-
tims. The availability compromise can also be con-
ducted on routing table entries by overflowing the table
with useless routes, which may result in a new route
being discarded.

Following the above taxonomy, we define a set of basic
attacks. Each basic attack corresponds to a different cate-
gory of anomalous basic events. We can further construct
compound attacks that are composed of a number of basic
attacks. Even if we cannot enumerate (or anticipate) all pos-
sible attacks, our belief is that most of them consist of one
or a few basic attacks. Therefore, by studying these basic
attacks, it is possible to develop security countermeasures
for unknown attacks as well.

5.2. Attack Foundation Library for Ad-hoc Routing

We used the attack taxonomy to build an attack founda-
tion library that includes the basic attacks. We take a re-
alistic view to implement only those basic attacks that are
(currently) meaningful. Figure 4 lists all basic attacks in the
attack foundation library.

The parameters shown here are rather self-evident. For
example, src and dst are the IP addresses for the source
and destination hosts.

Basic attacks on network confidentiality are easy to im-
plement because they only passively listen to the rout-
ing or data traffic – we can simply call BASR function
register_callback() to listen to local routing con-
trol messages and register_overhear_callback() to
eavesdrop in data and routing control messages on neigh-
boring nodes. Similarly, an attack on the confidential-
ity of routing table entries can be achieved by calling
read_route_entry().

Route_Drop_* and Data_Drop_* attacks are also easy
to implement. They register a callback function with
register_callback() for outgoing messages with cor-
responding packet types. The callback function will return
DROP under a certain probability, otherwise ACCEPT is re-
turned. The kernel who receives the output keywords DROP
and ACCEPT will take the corresponding actions, i.e., to
drop or to deliver the packet.

Modify_* attacks modify routing information in outgo-
ing routing messages. They also register a callback hook
for the interested packets. The callback function will return
MODIFY that will, in turn, change the routing packets with
the requested fields. Change_* attacks, on the other hand,
change information directly in local routing table entries. It
first calls read_route_entry() to copy information that
does not need to be modified from the current routing table
entry, then calls write_route_entry() to change rele-
vant fields.

For basic attacks that fabricate routing messages such as
Route Request (RREQ) and Route Reply (RREP), parame-
ters src and dst represent the originator and the target re-
spectively, while parameters ip_src and ip_dst specify
the source and destination in the IP header, i.e., the previ-
ous hop and the next hop in a route path. Here, it is possible
to specify a different address from the host’s own address
(known as IP spoofing). These attacks are implemented us-
ing basic network socket operations. Essentially, a special
UDP packet is created to mimic the same packet formats
of RREQ and RREP delivered by the routing protocol. In
particular, RREQ packets are delivered to a broadcast ad-
dress. RREP packets are delivered to the specified ip_dst.
False_Reply attempts to reply a RREQ even if it is the
destination and it does not have an available route. It sim-
ply copies the corresponding fields from the RREQ except

1. Confidentiality Compromises

(a) Attacks on Routing Messages
i. Location Disclosure

(b) Attacks on Data Packets
i. Data Disclosure

(c) Attacks on Routing Table Entries

2. Integrity Compromises

(a) Attacks on Routing Messages
i. Fabrication of Routing Messages

A. False Request(src, dst,
src seq, dst seq, ip src) – Forge
a Route Request even if there is no need to
discover a new route.

B. Active Reply(src, dst, dst seq,
ip src, ip dst) – Forge a Route Reply
even if there are no related incoming Route
Request messages.

C. False Reply(rreq, dst seq) – Forge
a Route Reply for a Route Request message
even if the node is not supposed to reply.

ii. Interruption of Routing Messages
A. Route Drop R(percentage, type) –

Drop a percentage of routing packets with a
certain type randomly.

B. Route Drop S(percentage, src,
type) – Drop a percentage of routing
packets with a specific source address.

C. Route Drop D(percentage, dst,
type) – Drop a percentage of routing
packets with a specific destination address.

iii. Modification of Routing Messages
A. Modify Sequence R(type, dst,

dst seq) – Modify the destination’s
sequence number.

B. Modify Sequence M(type, dst) – In-
crease the destination’s sequence number to
the largest allowed number.

C. Modify Hop(dst, hop) – Change the
hop count to a smaller value.

iv. Rushing of Routing Messages
A. Rushing F(dst) – Shorten the waiting

time for Route Replies when a route is unavail-
able.

B. Rushing Y(dst) – Shorten the waiting
time to send a Route Reply after a Route Re-
quest is received.

2. Integrity Compromises (continued)

(b) Attacks on Data Packets
i. Fabrication of Data Packets

ii. Interruption of Data Packets
A. Data Drop R(percentage, type),

Data Drop S(percentage, src,
type), Data Drop D(percentage,
dst, type) – Similar to Route Drop
attacks, but drop data packets instead.

iii. Modification of Data Packets

(c) Attacks on Routing Table Entries
i. Add Route

A. Add Route I(dst) – Randomly select and
validate an invalid route entry.

B. Add Route N (new rentry) – Add a
route entry directly with random destination
address.

C. Add Route(dst, next hop,
dst seq) – Either validate or add a
route entry, depending on whether the routing
entry has existed.

ii. Remove Route
A. Delete Route(dst) – Invalidate a ran-

dom valid route.

iii. Change Route Cost
A. Change Sequence R(dst, dseq),

Change Sequence M(dst),
Change Hop(dst, hop) – Similar to
Modify attacks, but the change is directly
applied on the routing table entries.

3. Availability Compromises

(a) Attacks on Routing Messages
i. Routing Message Flooding

A. Route Flooding R(freq, type)
– Flood with both source and destination
addresses randomized.

B. Route Flooding S(freq, src,
type) – Flood with the same source address
and random destination addresses.

C. Route Flooding D(freq, dst,
type) – Flood to a single destination with
random source addresses.

(b) Attacks on Data Packets
i. Data Packet Flooding

A. Data Flooding R(freq, type),
Data Flooding S(freq, src,
type), Data Flooding D(freq,
dst, type) – Similar to Route Flooding
attacks, but with data packets.

(c) Attacks on Routing Table Entries
i. Routing Table Overflow

A. Overflow Table() – Add excessive
routes to overflow the routing table.

Figure 4. Attack Foundation Library for Ad-hoc Routing

that the destination sequence number can be specified ex-
plicitly.

5.3. Extending the Attack Library

The attack library is extensible because compound at-
tacks can be built from the basic attacks in the foundation
library or other attacks. Here we will present several realis-
tic attacks that we developed and included in the extended
attack library. They can serve as the common test cases
to test, evaluate and compare different security solutions in
their response to MANET threats. Furthermore, they can
also be used as building blocks of more complicated attacks.

We now show a few attack examples in pseudo codes.

Route Invasion: Inject a node in an active route.

Route_Invasion(double duration /*unused*/,
addr_t src, addr_t dst)

{
if !read_route_entry(src) ||

!read_route_entry(dst)
{

return NO_ATTACK;
}
cur=read_local_entry()->dst;
cseq=read_local_entry()->seq;
sseq=read_route_entry(src)->seq;
dseq=read_route_entry(dst)->seq;
False_Request(dst, src, dseq+1, sseq+1, cur);
False_Request(cur, dst, cseq, dseq+1, cur);

}

If the route from src to dst exists, the attacker first gener-
ates a False_Request basic attack with a larger sequence
number for dst. It will make all nodes, including src, up-
date their routes to dst using cur as the next hop. Then, the
attacker generates a second False_Request attack, which
will launch a route discovery process to establish the route
from cur to dst. Eventually, cur will be injected in the
route from src to dst.

Note that this script does not prevent the route to be
changed back later. We can implement a persistent version
of this attack by calling the basic script repeatedly. The
pseudo code looks like this:

Route_Invasion_P(double duration,
addr_t src, addr_t dst)

{
while(duration>0)
{

Route_Invasion(0, src, dst);
sleep(period);
duration=duration-period;

}
}

Similar techniques may be applied to many other attacks as
well.

Route Loop: Create a route loop.

Route_Loop(double duration /*unused*/,
addr_t src, addr_t dst)

{
if !read_route_entry(src) ||

!read_route_entry(dst)
{

return NO_ATTACK;
}
cur=read_local_entry()->dst;
prev=read_route_entry(src).next_hop;
next=read_route_entry(dst).next_hop;
dseq=read_route_entry(dst).seq;
Add_Route(dst, prev, dseq+1);
Active_Reply(src, dst, dseq+1, cur, next);

}

If the attacker is close to a route from src to dst such that
two subsequent nodes in this route, prev and next, are in
the attacker’s 1-hop neighborhood, the attacker can first add
a route to dst using prev as the next hop. It then generates
an Active_Reply basic attack to next, using a larger se-
quence number for dst in the RREP message. It will make
next update its route to dst via cur. When prev receives
a packet from src, the packet is forwarded according to the
normal path and it will eventually reach next. However,
next now thinks the best route to dst is through cur and
cur forwards it back to prev. This effectively creates a
loop from src to dst and all packets will be dropped in the
route when their TTLs drop to zero.

A similar attack can be implemented when the attacker
is not close to the targeted route. The attacker can first
find a victim node V that is close to the route. Instead
of calling Add_Route locally on V (which will require an
additional compromise on V), the attacker can use either
False_Request or Active_Reply to force V to update
its route to dst via V’s corresponding prev. The rest is
similar.

Sinkhole: Create a sinkhole that redirects all neighboring
traffic to a particular node.

Sinkhole(double duration /*unused*/, addr_t victim)
{

cur=read_local_entry()->dst;
sseq=read_route_entry(victim)->seq;
dst=random address that does not exist;
dseq=random sequence number;
False_Request(victim, dst, sseq+1, dseq, cur);
Data_Drop_D(1.0, victim, TCP|UDP);

}

The attacker generates a False_Request that appears to
come from the victim and to a non-existent destination.
Since nobody has a route to that destination, the RREQ will
eventually flood throughout the whole network. As a side
effect, all nodes that receive the RREQ will update its route
to the victim via cur. Eventually, cur becomes a Sinkhole
for victim.

Note that the above attack examples only act on a single
host. However, it is not difficult to develop a powerful dis-
tributed attack with two or more compromised hosts based
on similar techniques.

6. Measurement and Evaluation Tools

Performance measurement tools are designed to evalu-
ate the effectiveness of the security solution in maintaining
application mission objective when under attacks. They are
very useful to compare alternative security solutions. Since
different security solutions have different requirements and
may target different ranges of attacks or threats, there is
no single measurement that can be used alone to deter-
mine the best solution. To provide an objective basis for
decision-making, we should support multiple measurement
tools based on different performance models. How to pri-
oritize and assess these metrics wisely and choose the best
security solution(s) is a research problem that goes beyond
our paper.

In S-MobiEmu, we build a set of measurement tools
based on the cost-benefit analysis model [10]. They can be
extended to build other measurement and evaluation tools.

Every security solution comes with a cost. We can iden-
tify the major cost factors as response cost and operational
cost [10]. Response cost is the cost to perform responsive
actions based on the intrusion evidence indicated by the se-
curity solution. Operational cost is the cost of applying se-
curity functions (e.g., encryption or intrusion analysis).

On the other hand, there is also a benefit by deploying
a security solution. One benefit measurement is damage
cost, which describes the degree of damage to the system
that is caused by an attack when the security solution is not
available. Another measurement is effectiveness, which de-
scribes how effective the security solution can reduce the
damage cost of a particular attack.

In our framework, we consider only the objective mea-
sures that are relevant to routing security. In particular, we
do not include the response cost and damage cost because
they are application and environment specific, and can thus
be subjective.

Most metrics in the tree are self-evident. We describe
the operational cost in the amount of resource consumption,
which can roughly be classified as system resource (such
as CPU, memory, disk, etc.) consumption, and network
resource (such as incoming and outgoing network traffic)
consumption. In particular, we consider the the amount of
overhearing traffic as an overhead as well. The usefulness of
this metric can be shown by the energy efficiency problem.
In wireless networks, energy efficiency is a very important
issue. It is widely agreed that both communication over-
head and overhearing overhead contribute to the majority
of energy consumption in a MANET environment. There-

1. Operational Cost

(a) System Resource Consumption
i. CPU Usage

ii. Memory Usage

(b) Network Resource Consumption
i. Communication Overhead

ii. Overhearing Overhead

2. Effectiveness

(a) Detection Accuracy
i. Detection Rate

ii. False Alarm Rate

Figure 5. Performance Measurement and
Evaluation Library for Ad-hoc Routing

fore, energy consumption can be measured (approximately)
in terms of both communication overhead and overhearing
overhead.

7. Case Study: Using S-MobiEmu to Evaluate
Intrusion Detection Systems (IDS)

7.1. Overview of IDS Research Objective

The MANET environment is known to be more vulnera-
ble than traditional wired networks, due to its dynamic and
distributed nature [16, 14]. Many recent research efforts
(such as [3, 4]) attempted to apply cryptographic solutions
to secure MANET, especially on routing protocols. How-
ever, such intrusion prevention methods are usually just
the first line of defense – this alone is often not sufficient.
As systems become ever more complex, and as security
is still often the after-thought, there are always exploitable
weaknesses in the systems due to design and programming
errors, or various “socially engineered” penetration tech-
niques.

Intrusion detection can be used as a second wall to pro-
tect network systems because once an intrusion is detected,
response can be put into place to minimize damages. The
primary assumptions of intrusion detection are: user and
program activities are observable, for example via system
auditing mechanisms; and more importantly, normal and in-
trusion activities have distinct behavior. Intrusion detection
therefore involves capturing audit data and reasoning about
the evidence in the data to determine whether the system is
under attack.

Designing an intrusion detection system (IDS) in
MANET is a challenging task [14]. First, unlike wired net-
work, MANET does not have traffic concentration points
where the IDS can collect audit data for the entire net-
work. Therefore, at any one time, the only available au-
dit trace will be limited to communication activities taking
place within the radio range, and the intrusion detection al-
gorithms must be made to work on this partial and local-
ized information. Further, IDS requires a well-defined at-
tack taxonomy. In a new environment such as MANET,
traditional attack analysis is not effective because it relies
heavily on details of known vulnerabilities and attack inci-
dents. Although MANET has many potential applications,
none of them are widely used yet. As a result, only limited
MANET attacks have been studied in the literature.

The objective of our IDS research is to investigate IDS
techniques and to develop IDS-based security systems for
MANET. Over the past several years, we have developed
several such techniques. In particular, we have proposed
two IDS frameworks for MANET [7, 6]. The first is a node-
based framework where IDS agents are deployed on every
node and they only utilize local information [7]. This frame-
work further contains a specification-based approach that
can accurately detect attacks that are direct violations of
the protocol specification, and a statistics-based approach
that can use machine learning tools to detect attacks that
are temporal and statistical in nature. The second IDS
framework is cluster-based because there are certain attacks
whose patterns can only be detected through collaborative
efforts among multiple nodes [6]. In this framework, IDS
agents can collect and use features from multiple nodes in a
neighborhood.

In this case study, we are to evaluate these two frame-
works in real systems. We have implemented the two frame-
works in the S-MobiEmu platform, and have conducted S-
MobiEmu experiments to evaluate their performance.

7.2. Experiment Setup

The IDS implementation relies heavily on BASR. In par-
ticular, the IDS agent is implemented as a separate process
from the routing protocol (AODV), while BASR provides
the necessary interface to learn the necessary information
about the routing protocol by an external process.

The following parameters are used throughout our exper-
iments. Mobility scenarios, unless specified explicitly, are
generated using a random waypoint model with 50 nodes
moving in an area of 1000m by 1000m. The pause time be-
tween movements is 10 seconds and the maximum move-
ment speed is 20.0 m/s. Randomized TCP and UDP/CBR
(Constant Bit Rate) traffic are used. We create 20 connec-
tions and the average traffic rate is 4 packets per second.
These parameters define a typical MANET scenario with

modest traffic load and mobility, which are similar to those
used in other experiments [13].

Five training data sets, each of which runs 10,000 sec-
onds, are generated for training statistical detection models.
Each data set contains randomly generated attack instances
with random start time and random duration periods. The
number of anomalous records accounts for roughly 50% of
total records. We also use ten attack data sets and two nor-
mal data sets as the test data. Each test set runs 5,000 sec-
onds. Normal data sets do not contain any attacks. In each
attack data set, different types of attacks are generated ran-
domly with equal probability and attack instances are gen-
erated with random duration periods. Compared with the
training data, a larger proportion, i.e., 80% of total records
are normal in an attack test set. It reflects a more realistic
setting since normal events should be the majority in any
real network environment.

7.3. Research Results

In Section 7.1, we outlined two IDS frameworks, node-
based and cluster-based. Intuitively, the cluster-based
framework is more powerful but potentially less resource
efficient. In order to evaluate these solutions, we need to
evaluate different performance measurements. For simplic-
ity, we present the results on two performance categories,
detection accuracy and network resource consumption.

Detection Accuracy: We are able to detect a number of
basic and compound attacks using the specification-based
approach. They include Data_Drop_*, Route_Drop_*,
Add_Route_*, Delete_Route, Overflow_Table,
Change_Sequence_*, Change_Hop, False_Request,
Active_Reply, False_Reply, Route_Invasion,
Route_Loop, and Sinkhole. We manually verified that
our specification is accurate in terms of representing all
allowable normal operations. Therefore, the detection rates
for these direct violations of protocol specification are
100% and the false alarm rates are 0%.

The statistics-based approach further detects the follow-
ing attacks: Data_Flooding_*, Route_Flooding_*,
Modify_Sequence_M, and Rushing_*. By controlling
the false alarm rate to be less than 1%, these attacks can
be detected with an average detection rate of 91%.

Note that these attacks can only be detected on the node
it is launched. A possible improvement can be achieved
with the cluster-based framework. It can detect attacks not
only on the compromised node, but also on other nodes
through collaborative efforts. For example, the cluster-
based IDS detects the Sinkhole attack with 91% detection
rate and less than 1% false alarm rate. Although the accu-
racy is slightly lower than that of the node-based approach,
it can prevent a single point of failure.

Network Resource Consumption: Although the node-
based IDS does not deliver or receive any extra net-
work messages, it requires the use of promiscuous mode,
which also consumes significant amount of energy due to
overhearing overhead. In contrast, although the cluster-
based IDS requires additional communication between IDS
agents, only a subset of nodes are required to enable
the promiscuous mode. We compare the overall network
overhead as a rough estimation of energy consumption
by including both communication overhead and overhear-
ing overhead between node-based and cluster-based frame-
works in Figure 6, where m is the maximum number of clus-
terheads per cluster. The figure shows that a cluster-based
approach can even be more energy efficient than a node-
based approach under modest mobility levels.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 100 200 300 400 500

N
et

w
or

k
O

ve
rh

ea
d

(in
 p

ac
ke

ts
 p

er
 s

ec
on

d)

Pause time (s)

Node-based IDS
Cluster-based IDS: m=1

m=2
m=5

Figure 6. Overall Network Overhead

7.4. Experience of Using S-MobiEmu

We expect our IDS can detect routing anomalies by uti-
lizing information on both the internal states of the under-
lying routing protocol and the patterns of network events.
In our implementation, we found that the BASR approach
serves us very well for this purpose. We can fully recon-
struct the protocol specification indirectly through BASR
hooks and use the specification to detect anomalies. The
implementation is non-trivial but it can be done fairly effi-
ciently.

We also experimented with a similar intrusion detection
system on the simulation platform ns-2. Compared with
that experience, development using S-MobiEmu is easier,
because of fewer resource constraints. By using the user-
mode Linux extension to MobiEmu [15], we were able to
experiment on an emulation platform of as many as 100 vir-
tual nodes. Since each test experiment can be conducted
in real-time, it turns out to be much faster than a simulated

run. Thus, we were able to conduct a larger number of ex-
periments with a wider parameter selection.

We further state that our implementation with BASR has
additional security advantages than a straightforward imple-
mentation without BASR. We note that a traditional IDS so-
lution requires a trace log from the routing protocol process
as input. Let us assume an attacker may not have the source
code to the routing protocol and therefore cannot tamper
with the normal protocol behavior directly. However, the
attacker may still be able to obtain the needed privileges to
modify the trace log file right before IDS can access it. This
attack will not succeed in our implementation because we
do not use the trace log as an intermediate audit log file. In-
stead, the IDS uses (read-only) helper hooks directly from
the routing protocol.

8. Discussions

8.1. Code Complexity

The BASR module for AODV is about 400 lines in C.
The attack library, which includes the implementation of
28 basic attacks, which form the Attack Foundation Library
and about 10 compound attacks, is implemented in about
3,500 lines in C++. The performance measurement toolkit
contains about 800 lines of code. For our case study, the
node-based IDS has about 15,000 lines of code. The cluster-
based IDS has about 8,000 lines of code, excluding the
shared code base from the node-based IDS.

The source code of S-MobiEmu will be available at Mo-
biEmu website http://mobiemu.sourceforge.net.
We also plan to release our IDS software in the future.

8.2. Limitation

We would like to point out that S-MobiEmu is not suit-
able for studying attacks in physical layer (such as jam-
ming), because the wireless communication is emulated.
However, if we replace the network emulator (MobiEmu)
with a real deployed MANET network, it is possible to
use the rest of S-MobiEmu platform to run experiments,
but such experiments may not be reproducible for the rea-
sons we have explained earlier. Similarly, we may have
to run real experiments for MAC-layer security study, be-
cause today’s wireless MAC is almost always implemented
in firmware and is inaccessible. However, if the MAC pro-
tocols are implemented in host OS, like in some new ar-
chitecture such as “Native WiFi”, we may be able to use
S-MobiEmu in emulation mode. We also envision that
S-MobiEmu can be extended to support MAC-layer secu-
rity study in future software-defined radio platforms where
MAC protocols are programmable in DSP or FPGA.

9. Related Work

To the best of our knowledge, there is no similar secure
MANET testing system reported in the open literature. In
wired network security, the best known test environment is
perhaps LARIAT, an IDS testbed used in the 1998 and 1999
DARPA Intrusion Detection evaluation [11, 12]. LARIAT
provides a configurable test environment where intrusion
detection modules can be “plugged” in the testbed to cap-
ture audit data and invoke response. It provides many ways
to configure background traffic and attack generation. How-
ever, it does not provide APIs to extend its attack library to
accommodate more/new attacks.

10. Conclusion

In this paper, we have explained the needs to have an ex-
perimental environment to assist the development and eval-
uation of secure MANET. We have developed one such plat-
form called S-MobiEmu. It allows us to test actual secure
MANET code in repeatable experiments. It provides the
necessary programming abstraction for us to design and im-
plement attack test cases and the flexibility for us to extend
the attack library in the future. We have tested S-MobiEmu
in our own secure MANET research. We used it to evaluate
an Intrusion Detection System and gained very positive re-
sults. We believe that S-MobiEmu will be a very useful tool
for secure MANET research community.

Our future work will include a better programming ab-
straction for attacks. We will exploit a scripting language
approach, where attack scenarios can be expressed in a form
that is easily understandable by human and executable by
machine. Then, the core of S-MobiEmu will be an attack
engine that interprets the scripts and injects malicious traf-
fic, security-related events, and the effect of security com-
promise (such as worm spread) into the emulated network.
Further future work will also include a better performance
measurement model.

Acknowledgment: This work is supported in part by NSF grants
CCR-0133629 and CCR-0311024 and Army Research Office contract
DAAD19-01-1-0610. The contents of this work are solely the responsi-
bility of the authors and do not necessarily represent the official views of
NSF and the U.S. Army.

References

[1] L. Breslau, et.al. Advances in network simulation. IEEE
Computer, 33(5):59–67, May 2000.

[2] A. Fasbender, D. Kesdogan, and O. Kubitz. Variable and
scalable security: Protection of location information in mo-
bile IP. In Proceedings of the 46th IEEE Vehicular Technol-
ogy Society Conference, Atlanta, GA, Mar. 1996.

[3] M. Guerrero Zapata. Secure Ad hoc On-Demand Distance
Vector Routing. ACM Mobile Computing and Communica-
tions Review (MC2R), 6(3):106–107, July 2002.

[4] Y.-C. Hu, A. Perrig, and D. B. Johnson. Ariadne: A se-
cure on-demand routing protocol for ad hoc networks. In
Proceedings of the Eighth Annual International Conference
on Mobile Computing and Networking (MobiCom’02), Sept.
2002.

[5] Y.-C. Hu, A. Perrig, and D. B. Johnson. Rushing attacks
and defense in wireless ad hoc network routing protocols.
In Proceedings of the ACM Workshop on Wireless Security
(WiSe’03), San Diego, CA, Sept. 19, 2003.

[6] Y. Huang and W. Lee. A cooperative intrusion detec-
tion system for ad hoc networks. In Proceedings of the
ACM Workshop on Security of Ad Hoc and Sensor Networks
(SASN’03), Oct. 2003.

[7] Y. Huang and W. Lee. Attack analysis and detection for ad
hoc routing protocols. In Proceedings of the 7th Interna-
tional Symposium on Recent Advances in Intrusion Detec-
tion (RAID’04), French Riviera, France, 2004.

[8] V. Jacobson, C. Leres, and S. McCanne. tcpdump. avail-
able via anonumous ftp to ftp.ee.lbl.gov, June 1989.

[9] V. Kawadia, Y. Zhang, and B. Gupta. System services for ad-
hoc routing: Architecture, implementation and experiences.
In Proceedings of the First International Conference on Mo-
bile Systems, Applications, and Services (MobiSys’03), San
Francisco, CA, May 2003.

[10] W. Lee, W. Fan, M. Miller, S. J. Stolfo, and E. Zadok. To-
ward cost-sensitive modeling for intrusion detection and re-
sponse. Journal of Computer Security, 10(1,2), 2002.

[11] R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines,
K. R. Kendall, D. McClung, D. Weber, S. E. Webster,
D. Wyschogrod, R. K. Cunningham, and M. A. Zissman.
Evaluating intrusion detection systems: the 1998 DARPA
off-line intrusion detection evaluation. In Proceedings of
the DARPA Information Survivability Conference and Expo-
sition (DISCEX I), volume 2, Jan. 2000.

[12] R. P. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and
K. J. Das. Analysis and results of the 1999 DARPA off-
line intrusion detection evaluation. In Proceedings of the
3rd International Workshop on Recent Advances in Intrusion
Detection (RAID’00), Oct. 2000.

[13] S. Marti, T. J. Giuli, K. Lai, and M. Baker. Mitigating rout-
ing misbehavior in mobile ad hoc networks. In Proceed-
ings of the 6th Annual International Conference on Mobile
Computing and Networking (Mobicom’00), pages 255–265,
2000.

[14] Y. Zhang and W. Lee. Intrusion detection in wireless ad-hoc
networks. In Proceedings of the 6th Annual International
Conference on Mobile Computing and Networking (Mobi-
com’00), pages 275–283, 2000.

[15] Y. Zhang and W. Li. An integrated environment for test-
ing mobile ad-hoc networks. In Proceedings of the Third
ACM International Symposium on Mobile Ad Hoc Network-
ing and Computing (MobiHoc’02), Lausanne, Switzerland,
June 2002.

[16] L. Zhou and Z. J. Haas. Securing ad hoc networks. IEEE
Network, 13(6):24–30, 1999.

