
Tappan Zee (North) Bridge: Mining Memory Accesses for
Introspection

Brendan Dolan-Gavitt
Georgia Tech

brendan@cc.gatech.edu

Tim Leek
MIT Lincoln Laboratory

tleek@ll.mit.edu

Josh Hodosh
MIT Lincoln Laboratory

josh.hodosh@ll.mit.edu
Wenke Lee
Georgia Tech

wenke@cc.gatech.edu

ABSTRACT
The ability to introspect into the behavior of software at
runtime is crucial for many security-related tasks, such as
virtual machine-based intrusion detection and low-artifact
malware analysis. Although some progress has been made in
this task by automatically creating programs that can pas-
sively retrieve kernel-level information, two key challenges
remain. First, it is currently difficult to extract useful infor-
mation from user-level applications, such as web browsers.
Second, discovering points within the OS and applications
to hook for active monitoring is still an entirely manual
process. In this paper we propose a set of techniques to
mine the memory accesses made by an operating system
and its applications to locate useful places to deploy active
monitoring, which we call tap points. We demonstrate the
efficacy of our techniques by finding tap points for useful
introspection tasks such as finding SSL keys and monitor-
ing web browser activity on five different operating systems
(Windows 7, Linux, FreeBSD, Minix and Haiku) and two
processor architectures (ARM and x86).1

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Design, Security

Keywords
Introspection; active monitoring; reverse engineering

1This work is sponsored by the Assistant Secretary of De-
fense for Research & Engineering under Air Force Contract
#FA8721-05-C-0002. Opinions, interpretations, conclusions
and recommendations are those of the author and are not
necessarily endorsed by the United States Government.

This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in:
CCS’13, November 4–8, 2013, Berlin, Germany.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
http://dx.doi.org/10.1145/2508859.2516697 .

1. INTRODUCTION
Many security applications have a need to inspect the in-

ternal workings of software. Host-based intrusion detection
systems, malware analyses, and digital forensics all depend
to some degree on being able to obtain information about
software that is by design undocumented and hidden from
public view. Thus, to operate correctly, security software is
typically built on reverse engineering, the art and practice of
elucidating the undocumented principles on which software
is built.

Unfortunately, reverse engineering is expensive, time con-
suming, and requires a high degree of expertise. The prob-
lem is exacerbated by the fact that, to protect against tam-
pering, security applications are often hosted in environ-
ments separated from the target being inspected, such as
a separate virtual machine. Because of this, their visibility
into the target is often limited to low-level features such as
memory and CPU state, and any higher-level information
must be reconstructed based on reverse engineered knowl-
edge.

This problem, which we will refer to as the introspection
problem, has been approached by a number of recent re-
search efforts such as Virtuoso [11] and VMST [12]. Exist-
ing systems, however, have a number of limitations. First,
they focus on retrieving kernel-level information. However,
a great deal of security-relevant information exists only at
user-level, such as URLs being visited by the browser, in-
stant messages and emails sent by desktop clients, and sys-
tem and application log messages. Second, they require that
the desired information be accessible through some public in-
terface (a public API in the case of Virtuoso, and a userland
program or kernel module in the case of VMST). This means
that some security-relevant information may be inaccessible
to such tools. Finally, Payne et al. [25] argue that many
security applications need some form of active monitoring ;
that is, they need to be notified when certain system events
occur. Current solutions to the introspection problem pro-
vide no way of locating places in the system where it would
be useful to interpose.

In this paper, we attempt to address the limitations of past
solutions by examining a rich source of information about
system and application activity: memory accesses observed
at runtime. Our key insight is that a memory accesses made
at different points in a program can be treated as streams
of related information. For example, when visiting a URL,
a web browser must write to memory the URL that is be-

ing visited, and it will generally do so at the same point
in the program. By intercepting memory accesses made at
this program point we can observe all URLs visited. These
program points, which we call tap points, provide a natural
place to interpose to extract security-relevant information,
and could be integrated into an active monitoring system
such as Lares [25].

There are several challenges that must be overcome to
make use of tap points. The first is the sheer amount of
data that must be sifted through. In ten minutes’ worth
of execution on a Windows 7 system, for example, we ob-
served a total of 18.9 million unique tap points which read
and wrote a total of 32.8 gigabytes of data. To overcome
this challenge, we make use of techniques from information
retrieval and machine learning, described in Section 4, to
quickly zero in on the tap points that read or write informa-
tion relevant to introspection.

Second, simply setting up an environment in which one
can observe every memory access made by the whole sys-
tem (OS and applications) poses a challenge. Whole-system
emulators such as QEMU [4] provide the necessary basis for
such instrumentation, but intercepting and analyzing every
memory access online is not practical: the resulting sys-
tem is so slow that network connections time out and the
guest OS may think that programs have become unrespon-
sive. To solve this problem, we add record and replay to
QEMU, which allows executions to be recorded with low
overhead. Our heavyweight analyses are then run on the
replayed execution to analyze every memory access made
without perturbing the system under inspection. We de-
scribe our system, Tappan Zee Bridge (TZB),2 in detail in
Section 5.

Finally, previous systems have required significant effort
to support new architectures. This problem has become
more pressing in recent years, as ARM-based devices such
as smartphones have exploded in popularity. Because TZB
looks at memory accesses, rather than inspecting binary
code, it naturally supports a wide variety of architectures
with minimal effort. To demonstrate this, our evaluation
includes the ARM architecture in addition to x86, and the
techniques we describe easily generalize to other architec-
tures.

The remainder of this paper is structured as follows. Sec-
tion 2 precisely defines what a tap point is. We then ex-
plore that definition and its impact on the scope of our work
and the assumptions it rests on in Section 3. Section 4 de-
scribes techniques for finding tap points of interest. We
then discuss our system, Tappan Zee Bridge (TZB), which
implements these techniques, as well as PANDA (Platform
for Architecture-Neutral Dynamic Analysis), a new dynamic
analysis platform on which TZB is built, in Section 5. We
evaluate TZB in Section 6, and show that it is capable of
finding tap points useful for introspection in a wide variety of
applications, operating systems, and architectures. Finally,
we describe the limitations of our approach in Section 7, re-
lated work in this area in Section 8, and offer concluding
remarks in Section 9.3

2So named because the northbridge on Intel architectures
traditionally carried data between the CPU and RAM.
3All software described in this paper (i.e. PANDA and TZB)
is open source and can be downloaded at http://github.
com/moyix/panda/.

00a3bdgoogle.comr2ab.tmpa2bc

google.comr2ab.tmp

00a3bda2bc

strcpy

memcpy

google.com

00a3bda2bc

strcpy←open_url

memcpy

r2ab.tmp strcpy←open_file

(a)

(b)

(c)

Figure 1: Three different ways of defining a tap
point: (a) as a single stream of information from the
CPU to RAM ; (b) split up according to program
and location within program ; (c) split up accord-
ing to program, location within program, and calling
context.

2. DEFINING TAP POINTS
At the heart of our approach is an abstraction on top of

memory accesses made by the CPU, the tap point. A tap
point is a point in a system at which we wish to capture a
series of memory accesses for introspection purposes; how-
ever, the exact definition of “a point in a system” will make
a great deal of difference in how effective our approach can
be.

A naive approach to defining tap points would be to sim-
ply group memory accesses by the program counter that
made them (e.g., EIP/RIP on x86 and R15 on ARM). This
approach fails in two common cases: first, memory accesses
made by bulk copy functions, such as memcpy and strcpy,
would all be grouped together, which would commingle data
from different parts of the program into the same tap point.
In addition, looking only at the program counter would con-
flate accesses from different programs.

Instead, we define tap points as the triple

(caller, program counter, address space)

Including the caller and the address space (the CR3 register
on x86, and the CP15 c2 register on ARM) separates out
memory accesses into streams that should, in general con-
tain the same type of data.4 Figure 1 shows the effect of
choosing various definitions of a tap point when looking for
the place where the browser writes the URL entered by the
user (“google.com”). At the coarsest granularity (a), one can
simply look at all writes from the CPU to RAM; however,
the desired information is buried among reams of irrelevant
data. Separating out tap points by program and program
counter (b) is better, but still combines uses of strcpy that
contain different information — in this case, a filename and
a URL. By including the calling context (c), we can finally
obtain a tap point that contains just the desired information.

4Making use of tap points defined this way in the real world
is slightly more difficult, since a program’s address space
will differ and its code may be relocated by ASLR. These
complications can be overcome with a minor amount of en-
gineering, however.

It is possible that some tap points may require deeper in-
formation about the calling context (for example, if an ap-
plication has its own wrapper around memcpy), but in prac-
tice we have found that just one level of calling context is
usually sufficient. In addition, because TZB uses a whole-
system emulator that can watch every call and return, we
can obtain the call stack to an arbitrary depth for any tap
point. This makes it easy to add extra context for a given
tap point, if it is found that doing so separates out the de-
sired information. Examples of tap points that require more
than one level of callstack information are given in Sections
6.1.2 and 6.1.3.

Conversely, one might wonder whether this definition of
a tap point may split up data that should logically be kept
together. To mitigate this problem case, we introduce the
idea of correlated tap points: we can run a pass over the
recorded execution that notices when two tap points write
to adjacent locations in memory in a short period of time
(currently 5 memory accesses). The idea is that these tap
points may be more usefully considered jointly; for example,
a single data structure may have its fields set by successive
writes. These writes would come from different program
counters, and hence would be split into different tap points,
but it may be more useful to examine the data structure as a
whole. By noticing this correlation we can analyze the data
from the combined tap point.

3. SCOPE AND ASSUMPTIONS
The goal of Tappan Zee Bridge is to find points at which

to interpose for active monitoring. More precisely, our goal
is to speed the current entirely manual process by which
applications or operating systems are reverse engineered in
order to locate tap points for active monitoring. It should
be noted that we do not aim to surpass those manual ef-
forts. We have no automatic way, for instance, of knowing
for certain if a tap point will fail to output crucial data or,
alternately, spew out superfluous information under some
future conditions. This is a separate problem to which we
see no ready solution. Static analysis of candidate tap points
or extensive testing are good stop-gaps, but nothing short of
fully understanding enormous binary code bases can really
give complete assurance that a tap point won’t miss or cause
false alarms in the future.

In this section, we explore how our definition of a tap
point and our focus on active monitoring shape the scope of
our work.

First and most obviously, our focus on memory accesses
necessarily limits our scope to information that is read from
or written to RAM at some point. Although this is quite
broad, there are notable exceptions. For example, TRE-
SOR [24] performs AES encryption without storing the key
or encryption states in RAM by making clever use of the x86
debug registers and the AES-NI instruction set. Aside from
such special cases, however, this assumption is not particu-
larly limiting.

Second, our goal of finding tap points suitable for active
monitoring motivates a design that treats memory accesses
at tap points as sources of streaming data. Our algorithms,
therefore, typically work in a streaming fashion as the sys-
tem executes, remembering only a fixed amount of state for
each tap point. Although this is a natural fit for active mon-
itoring, where events should be reported as soon as possible,

Time

M
em

or
y

Ad
dr

es
s

memcpy

g
o

o
g

l
e

dmesg

[...]

d
o

n
e

I
n

i
t

memmove

l
e

.
c

g
o

o
g

serial

U n c o m p r e s s

Tap A Tap B

Figure 2: Patterns of memory access that we might
wish to monitor using TZB.

it makes handling data whose spatial order in memory differs
from its temporal order as it is accessed more difficult.

Third, the encoding of the data sought must be to some
extent guessable. For example, to search for a string, one
must know what encodings are likely to be used by the sys-
tem to represent strings. In general this is not a severe
limitation, but it does come up; we discuss one such case in
Section 6.2.2.

Finally, the use of calling context in the definition of a tap
point raises the question of how much context is necessary or
useful. Our current system uses only the most recent caller,
but we have seen both situations where this is not enough
and where it is too much. Overall, however, one level of
calling context has proved to be a reasonable choice for a
wide variety of introspection tasks.

To better illustrate the boundaries of our technique, con-
sider Figure 2, which plots the address of data written by
different tap points over time for four patterns of memory
access. In the bottom two quadrants, we have cases that
are challenging, but currently well-supported by TZB. In
the bottom-left, a standard memcpy implementation on x86
makes a copy in 4-byte chunks using rep movsd, and then
does a two-byte movsw to get the remainder of the string.
Because the access occurs across two different instructions,
TZB sees two different tap points. Our tap point correlation
mechanism correctly deduces that the accesses are related,
however, because they operate on adjacent ranges in a short
span of time.

The case shown in the bottom right quadrant would be
tricky if we looked only at memory access spatially and not
temporally. Here, a utility function writes data out to a se-
rial port by making one-byte writes to a memory-mapped
I/O address.5 Because TZB sees these memory writes in
temporal order, ignoring the address, the data is seen nor-
mally and the analyses we describe all operate correctly.

5Although not reported in this paper, this case is one we
actually encountered while experimenting with an embedded
firmware.

Record Execution

google.com

Recorded
nondeterministic

inputs

Replay Execution

google.com

Validate

bing.com

TZB
Analysis

✘

✔bing.com

!D!@.c

Legend
Stage done

by hand

Stage done
automatically

Tap Point

google.com

010300ea

firefox.exe

!D!@.c

8.8.8.8

Figure 3: The workflow for using TZB to locate
points at which to interpose for active monitoring.

The upper quadrants show cases that are currently not
handled by TZB. In the upper left, memmove copies a buffer
in reverse order when the source and destination overlap.
Thus, when viewed in temporal order, a copy of a string
like “12345678” would be seen by TZB as “56781234”. This
case is unlikely to be handled by TZB without a signifi-
cant redesign, as its view of memory accesses is inherently
streaming.

Finally, the upper right, which represents the case of dmesg
on Linux, is an example of the “dilemma of context”. Al-
though the function, do_syslog, that writes log data to
memory is called from multiple places (creating multiple tap
points), it writes to the same contiguous buffer. Unlike the
memcpy case, a significant amount of time may pass before
the next function calls do_syslog, and so our tap correla-
tion, which only considers memory accesses within a fixed
time window, will not notice that the tap points ought to
be grouped together. We believe that this case could be
overcome with additional engineering work, but this is left
to future work.

4. SEARCH STRATEGIES
To find useful tap points in a system—places from which

to extract data for introspection—using Tappan Zee Bridge,
one begins by creating a recording that captures the desired
OS or application behavior. For example, if the end goal is to
be notified each time a user loads a new URL in Firefox, one
would create a recording of Firefox visiting several URLs.
This recording is made by emulating the OS and application
inside of the dynamic analysis platform PANDA (described
in more detail in Section 5.1), which can capture and record
all sources of non-determinism with low overhead, allowing

for later deterministic replay. Next, one can run one or
more analyses that seek out the desired information among
all memory accesses seen during the execution. Analyses in
TZB take the form of PANDA plugins that are called on each
memory access made during a replayed execution and, at the
end, write out a report on the tap points analyzed. Finally,
the tap points found should be validated to ensure that they
do, in fact, provide the desired information. Such assurance
can be gained either by examining the data in the tap point
in new executions, or by examining the code around the tap
point. This workflow is illustrated in Figure 3.

In this section, we describe three different ways of find-
ing tap points grouped according to a standard epistemic
classification scheme [26]: searching for “known knowns”—
tap points where the content of the desired data is known;
searching for “known unknowns”—tap points where the kind
of data sought is known, but its precise format is not; and fi-
nally “unknown unknowns”—tap points where the type and
format of the data sought are not known, and we are instead
simply trying to find “interesting” tap points.

4.1 Known Knowns
The simplest case is finding data that one knows is likely

to be read or written by a tap point, and where the encoding
of the data is easily guessed. For example, to find a tap point
that can be used to notify the hypervisor whenever a URL
is entered in a browser, one can visit a known sequence of
URLs, and then monitor all tap points, searching for specific
byte sequences that make up those URLs. The same holds
for other data whose representation when written to memory
is predictable: filenames, window titles, registry key names,
and so on. For this kind of data, simple string searching is
usually sufficient to zero in on the few tap points that handle
the data of interest, and in our experience it is one of the
most effective techniques for finding useful tap points.

4.2 Known Unknowns
A second tap point application involves finding tap points

for things about which we have limited knowledge. We can
easily assemble corpora of exemplars to represent a seman-
tic class: English prose, kernel messages, or mail headers.
These examples need not come from tap points but can eas-
ily be collected directly from interacting with the operating
system itself. From such a corpus, we can readily build a
statistical model, with which we can build a distance mea-
sure for scoring and ranking tap points by how close their
contents are to the model.

In addition to such statistical methods, we can also search
using an oracle. This is the case, for example, with tap
points that write encryption keys. Although the exact key
may not be known in advance, we can check whether a given
byte string is a valid decryption key by trying to decrypt our
sample data.

4.3 Unknown Unknowns
The final strategy for finding useful tap points is also the

least focused. If there is no specific introspection quantity
sought, one might instead wish to find interesting tap points,
for some suitable definition of “interesting.” To support
this scenario, TZB offers a form of unsupervised learning—
clustering—to group together tap points that handle similar
data. The idea is that one can then examine exemplars from
each cluster, rather than being forced to look through a large

number of tap points. Thus, our use of clustering functions
as a form of data triage.

5. IMPLEMENTATION
In this section, we describe both the dynamic analysis

platform employed to build TZB, but also TZB-specific al-
gorithmic and data-structure solutions.

5.1 PANDA
TZB makes extensive use of the Platform for Architecture-

Neutral Dynamic Analysis (PANDA), which was developed
by the authors in collaboration with Northeastern Univer-
sity.

PANDA is based upon version 1.0.1 of the QEMU machine
emulator [4]. QEMU is an excellent and common choice for
whole-system dynamic analysis for two main reasons. First,
performance is good (about 5x slowdown over native). Sec-
ond, every basic block of guest code is disassembled by the
host in order to emulate, which means that there are op-
portunities to interpose analyses at the basic block or even
instruction level, if desired. QEMU lowers instructions to
an intermediate language (IL) in order to employ a single
back-end code generator, the Tiny Code Generator (TCG).
This IL means dynamic analyses can potentially be writ-
ten once and re-used for all 14 architectures supported by
QEMU. Further, this version of QEMU is capable of booting
and running modern operating systems such as Windows 7
(earlier versions of QEMU such as 0.9.1 cannot).

There are three main aspects to PANDA that make it very
convenient for building dynamic analyses. First, PANDA
provides a plug-in architecture that readily permits writing
guest analyses in C and C++. Plug-in code is executed
from a number of standard callback locations: before and
after basic blocks, memory read and writes, etc. This is not
unlike the schemes employed in other whole-system dynamic
analysis platforms such as BitBlaze [29] and S2E [7]. In ad-
dition, plugins can export functionality that can then be
used in other plugins, allowing complex behavior to be built
up from simple components. From a software engineering
perspective, PANDA’s plugin architecture allows the various
analyses supported by TZB to be cleanly separated from the
main emulator, which makes for a much more comprehensi-
ble and maintainable codebase.

The second aspect of PANDA that makes it an excellent
dynamic analysis platform is nondeterministic record and
replay (RR). In our formulation of RR, we begin a record-
ing by invoking QEMU’s built-in snapshot capability. Sub-
sequently, we record all inputs to the CPU, including ins,
interrupts, and DMA. Recording imposes a small overhead
(10-20%) but not enough to perturb execution. During re-
play, we revert to a snapshot and proceed to pull CPU inputs
from a log when required. Unlike many other RR schemes,
we do not record and replay device inputs, which means we
cannot “go live” at any point during replay. But we can per-
form repeated replays of an entire operating system under
arbitrary instrumentation load without worrying about this
perturbing application or operating system operation. This
capability is vital to TZB: without record and replay, the
heavyweight analyses we perform would make the system
unusably slow.

The final aspect of PANDA worth mentioning is its inte-
gration of LLVM. QEMU lowers basic blocks of guest code
to its own IL, which PANDA can, additionally, re-render

as basic blocks of LLVM code via a module extracted from
S2E. We omit further discussion of this capability as it is
not used by TZB.

5.2 Callstack Monitoring
As explained in Section 2, tap points need information

about the calling context. Keeping track of this informa-
tion requires some knowledge about the CPU architecture
on which the OS is running, and so we decided to encap-
sulate this task into a single plugin. TZB’s other analyses
can then query the current call stack to arbitrary depth by
invoking get_callers and not worry about the details de-
scribed in this section.

To track call stack information, the callstack plugin ex-
amines each basic block as it is translated, looking for an
(architecture-specific) call instruction (currently, we look for
call on x86 and bl and mov lr, pc on ARM). If the block
includes a call instruction, then we push the return address
onto a shadow stack after each time that block executes.

Detecting the return from a function does not require any
architecture-specific code. Before the execution of every ba-
sic block, we check whether the address we are about to
execute is at the top of the stack; if so, we pop it. We only
need to check the starting address of the basic block, be-
cause by definition a return terminates a basic block, so the
return address will always fall at the beginning of a block.

We note that these techniques may fail if traditional call-
return semantics are violated. For example, if a program
emulated calls and returns by manually pushing the return
address and using a direct jump, it would not be detected as
a call. However, for non-malicious compiler-generated code,
we have found that the algorithm described here works well.

5.3 Fixed String Searching
Searching for fixed strings is one of the most effective tools

for finding useful tap points. Because we have to sift through
many gigabytes of data that pass through tap points during
any given execution, it is vital that string search be efficient
in both time and space.

To satisfy these constraints, we developed stringsearch,
a plugin which requires only one byte of memory per search
string and per tap point. This one-byte counter tracks, for
a given tap point, how many bytes of the search string have
been matched by the data seen at the tap point so far.
Whenever a byte is read from or written to memory, we
can check what the next byte in the search string is using
this position, and compare it to the byte passing through
the tap point. If it matches, the counter is incremented;
if it does not match, the counter is reset to zero. When
the counter equals the length of the search string, we know
that the search string has passed through the tap point, and
we report a match. Note that because the counter is only
one byte, our matcher only supports strings up to 256 bytes
long; this cap could be easily raised to 65,536 bytes by using
a two-byte counter, at the cost of doubling the memory re-
quirements. Thus far, 256-byte strings have been more than
sufficient.

This effectively implements a very simple deterministic
finite automaton (DFA) matcher. Indeed, we believe that it
should be possible to efficiently implement a streaming basic
regular expression matcher that requires only an amount
of memory logarithmic in the number of states needed to

represent the expression. We leave this generalization to
future work, however.

5.4 Statistical Search and Clustering
Collecting bigram statistics on data that passes through

each tap point is an efficient way to enable “fuzzy” search
based on some training examples, as well as enabling clus-
tering. To implement this we collect bigram statistics for all
tap points seen in execution, as well as for the exemplar; the
data seen at each tap point is thus represented as a sparse
vector with 65,536 elements (one for each possible pair of
bytes).

To search, we can then sort the tap points seen by taking
the distance (according to some metric) from the exemplar.
For our metric, we have chosen to use Jensen-Shannon di-
vergence [18], which is a smoothed and symmetrized version
of the classic Kullback-Leibler divergence [16] (also known
as information gain). We also examined the Euclidean and
cosine distance metrics, but found their performance to be
consistently worse. Jensen-Shannon divergence between two
probability distributions P and Q is defined as:

JSD(P,Q) = H

(
P +Q

2

)
− H(P) +H(Q)

2

where H is Shannon entropy.
Bigram collection is done by maintaining, for each tap

point, two pieces of information: (1) the last byte that
passed through the tap point, so that we can see bigrams
that span a single memory access; (2) a histogram of all byte
pairs seen at the tap point. The latter of these must be main-
tained sparsely: because our bigrams are based on bytes, a
dense histogram would require 65,536 integers’ worth of stor-
age per tap point. Given that most of the executions exam-
ined in this paper contain upwards of 500,000 tap points,
this would require more than 120GB of memory, which is
clearly infeasible (and wasteful, since most of those entries
would be zero).

Instead, we store the histogram sparsely, using a C++
Standard Template Library std::map<uint16_t,int>. This
keeps memory usage down without sacrificing any accuracy,
but it does introduce some extra complexity when process-
ing the resulting histograms, as our search software must
support sparse vectors rather than simple arrays. Because
of this additional complexity, we opted to implement the
search and clustering algorithms ourselves, after some ini-
tial prototyping using SciPy’s sklearn toolkit.

Our clustering is based on the venerable k-means algo-
rithm [31], but using the Jensen-Shannon divergence de-
scribed in the previous section. As in the statistical search
case, we use bigram statistics for our feature vectors. Ini-
tialization uses the KMeans++ algorithm [2], which helps
guarantee that the initial cluster centers are widely sepa-
rated. We evaluate the performance of this clustering com-
pared to an expert labeling in Section 6.3.

Our statistical search tool is implemented in 246 lines
of C++, and computes the Jensen-Shannon divergence be-
tween a training histogram (dense) and a set of sparse his-
tograms. Our K-Means clustering tool is 481 lines of C++
code, and outputs a clustering of the sparse histograms us-
ing Jensen-Shannon divergence as a distance metric.6 Both

6The use of this distance metric is justified theoretically be-
cause Jensen-Shannon distance is a Bregman divergence [3]

tools are multithreaded, which greatly speeds up the com-
putation.

5.5 Finding SSL/TLS Keys
We have also implemented a PANDA plugin called keyfind,

which locates tap points that write SSL/TLS master secrets.
The SSL/TLS master secret is a 48-byte string from which
an SSL/TLS-encrypted session’s keys are derived; thus, if a
tap point that writes the master key can be found, encrypted
network traffic can be decrypted and analyzed.

The plugin operates on a recording in which a program
initiates an encrypted connection to some server and an en-
crypted packet sent by the client (captured using, e.g., tcp-
dump). The keyfind uses each 48 bytes accessed at each
tap point as a trial decryption key for a sample packet sent
by the client. If the decrypted packet’s Message Authentica-
tion Code (MAC) verifies that the packet was decrypted cor-
rectly then we can conclude that the tap point can be used
to decrypt SSL/TLS connections made by the program un-
der inspection. In Section 6.2.1 we show how this technique
can be used to spy on connections made by the Sykipot mal-
ware, without performing a (potentially detectable) man in
the middle attack.

6. EVALUATION
In this section, we evaluate the efficacy of our various tap

point search strategies, described in Section 4, at finding
tap points useful for introspection. Our experiments are
motivated by real-world introspection applications, and so
for each experiment we describe a typical application for
the tap points found. Each experiment was also generally
performed on a variety of different operating sytems, appli-
cations, and architectures in order to evaluate TZB’s ability
to handle a diverse range of introspection targets.

For the sake of readability, we have attempted to use sym-
bolic names for addresses wherever possible in the following
results. It is hoped that these will be more meaningful to
the reader than the raw addresses, but we emphasize that
debug information is in no way required for TZB to work.

6.1 Known Knowns

6.1.1 URL Access
Monitoring visited URLs is likely to be useful for host-

based intrusion detection and prevention systems. For ex-
ample, an IDS may wish to verify that outgoing requests
were initiated by a human rather than malware on the users’s
machine, or match URLs visited against a blacklist of mali-
cious sites. This poses a challenge for existing introspection
solutions, as URL load notification is not generally exposed
by a public API, and the data resides in a user application
(the browser).

To find URL tap points, we created training executions by
visiting a set of three URLs (Google, Facebook, and Bing) in
the following operating systems and browsers: Epiphany on
Debian squeeze (armel and amd64); Firefox 16.0.2, Opera
12.10, and Internet Explorer 8.0.7601.17514 on Windows 7
SP1 (x86); and WebPositive r580 on Haiku (x86). We used
the stringsearch plugin to search for the ASCII and UTF-
16 representations of the three URLs, and then validated

and empirically because our clustering typically converges
after around 30 iterations.

Browser Caller PC
Deb Epiphany (arm) WebCore::KURL::KURL+0x30 WebCore::KURL::init+0x70
Deb Epiphany (amd64) webkit_frame_load_uri+0xc3 WebCore::KURL::init+0x368
Win7 IE8 (x86) ieframe!CAddressEditBox::_Execute+0xaa ieframe!StringCchCopyW+0x50
Win7 Firefox (x86) xul!nsAutoString::nsAutoString+0x1a xul!nsAString_internal::Assign+0x1d
Win7 Chrome (x86) msftedit!CTxtEdit::OnTxChar+0x105 msftedit!CTxtSelection::PutChar+0xb8
Win7 Opera (x86) Opera.dll+0x2cf6c6 Opera.dll+0x142783
Haiku WebPositive (x86) BWebPage::LoadURL+0x3a BMessage::AddString+0x26

Table 1: Tap points found that write the URL typed into the browser by the user.

each tap point found to ensure that it wrote only the desired
data. The results can be seen in Table 1.

6.1.2 TLS/SSL Master Secrets
Monitoring SSL/TLS-encrypted traffic is a classic problem

for intrusion detection systems. Currently, hypervisor- or
network- based IDSes that wish to analyze encrypted traffic
must perform a man-in-the-middle attack on the connection,
presenting a false server certificate to the client. Not only
does this require the client to cooperate by trusting certifi-
cates signed by the intrusion detection system, it also takes
control of the certificate verification process out of the hands
of the client—a dangerous step, given that many existing
SSL/TLS interception proxies have a history of certificate
trust vulnerabilities [15].

Instead of a man-in-the-middle attack, we can instead use
TZB to find a tap point that reads or writes the SSL/TLS
master secret for each encrypted connection, giving us a
“man-on-the-inside”. Because this secret must be generated
for each SSL/TLS connection, if we can find such a tap
point, it can then be provided to the IDS to decrypt and, if
necessary, modify the content of the SSL stream.

To find the location of these tap points, we ran a modi-
fied copy of OpenSSL’s s_server utility that prints out the
SSL/TLS master key any time a connection is made. We
then recorded executions in which we visited the server with
each of our tested SSL clients, and noted the SSL/TLS mas-
ter secret. Finally, we used stringsearch to search for a
tap point that wrote the master key, and verified that the
tap wrote exactly one master key per connection. For this
test, we used: OpenSSL s client 0.9.8 on Debian squeeze
(armel), OpenSSL s client 0.9.8 and Epiphany 2.30.6 on De-
bian squeeze (amd64), and Firefox 16.0.2, Google Chrome
23.0.1271.64, Opera 12.10, and Internet Explorer 8.0.7601
on Windows 7 SP1 (x86). The results are shown in Table 2.

There is one particular point of interest to observe in these
results. In the case of Epiphany on Debian, we found that
one level of callstack information was not sufficient—with
only the immediate caller, the tap point contains more data
than just the SSL/TLS master secret. This is because the
version of Epiphany uses SSLv3 to make connections, and
the pseudo-random function (PRF) used in SSLv3 has the
form

MD5(SHA1(. . .))

The other implementations instead use TLSv1.0, where the
PRF has the form

MD5(. . .)⊕ SHA1(. . .)

This final XOR operation is done from a unique program
point, so the tap point that results from it contains only
TLS master keys. This points to a potential complication
of using tap points for introspection: it is not always clear

in advance how many levels of call stack information will be
required.

We were successful in locating tap points for all SSL/TLS
clients tested. We note that uncovering similar information
using traditional techniques would have required significant
expertise and reverse engineering of both open source and
proprietary software.

6.1.3 File Access
Monitoring file accesses is a requirement for many host-

based security applications, including on-access anti-virus
scanners. Thus, locating a tap point at which system-wide
file accesses can be observed is of considerable importance.
However, because previous approaches to the introspection
problem [11, 12] passively retrieve information from the guest
and are not event-driven, they cannot be used in this sce-
nario.

To find such a tap point, we created recordings in which
we opened files in various operating systems. Specifically, in
each OS we created 100 files, each named after ten successive
digits of π. The operating systems chosen for this test were:
Debian squeeze (amd64), Debian squeeze (armel), Windows
7 SP1 32-bit, FreeBSD 9.0, and Haiku R1 Alpha 3 (all on
x86). We then searched for tap points that wrote strings
matching the ASCII and UTF-16 encodings of the filenames
using the stringsearch analysis plugin. The UTF-16 en-
codings were included because it was known that Windows
7 uses UTF-16 for strings pervasively, allowing us to surmise
that on Windows URLs would likely be UTF-16 encoded.
Finally, we looked at the tap points found by stringsearch,
and validated them by hand.

The results are shown in Table 3. For most of the oper-
ating systems we had no difficulty finding a tap point that
contained the name of each file as it was accessed. The one
exception was Windows 7, where the most promising tap
point not only wrote file results, but also a number of un-
related objects such as registry key names. As in the SSL
case, the root cause of this was insufficient calling context:
in Windows several different things fall under the umbrella
of a “named object”, and these were all being captured at
this tap point. We found that four levels of calling context
were sufficient to restrict the tap point to just file accesses;
the “deepest” caller was IopCreateFile (which, despite its
name, is used for both opening existing files and creating
new ones).

6.2 Known Unknowns

6.2.1 SSL Malware
The need to snoop on SSL-encrypted connections arises in

malware analysis as well. Two features distinguish this case
from that of intercepting the traffic of benign SSL clients
presented in the previous section. First, the ability to de-

Client Caller PC Process
Deb OpenSSL (arm) tls1_generate_master_secret+0x9c tls1_PRF+0x90 openssl
Deb OpenSSL (amd64) ssl3_send_client_key_exchange+0x437 tls1_generate_master_secret+0x108 openssl
Deb Epiphany (arm) md_write+0x74 md5_write+0x68 epiphany
Deb Epiphany (amd64) md_write+0x60 md5_write+0x49 epiphany
Haiku WebPositive (x86) tls1_generate_master_secret+0x65 tls1_PRF+0x14b WebPositive
Win7 Chrome (x86) chrome!NSC_DeriveKey+0x1241 chrome!TLS_PRF+0xa0 chrome.exe
Win7 IE8 (x86) ncrypt!Tls1ComputeMasterKey@32+0x57 ncrypt!PRF@40 lsass.exe
Win7 Firefox (x86) softokn3!NSC_DeriveKey+0xe85 freebl3!TLS_PRF+0xbb firefox.exe
Win7 Opera (x86) Opera.dll+0x2eb06e Opera.dll+0x50251 opera.exe

Table 2: Tap points found that write the SSL/TLS master secret for each SSL/TLS connection.

Target Caller PC
Debian (amd64) getname+0x13e strncpy_from_user+0x52
Debian (arm) getname+0x88 __strncpy_from_user+0x10
Haiku (x86) EntryCache::Lookup+0x27 hash_hash_string+0x1b
FreeBSD (x86) namei+0xd1 copyinstr+0x38
Windows 7 (x86) ObpCaptureObjectName+0xcb memcpy+0x33

Table 3: Tap points found for file access on different operating systems.

crypt the traffic without a man in the middle is even more
important: in contrast to benign clients, we cannot assume
that malware will accept certificates signed by our certificate
authority. Second, we cannot rely on having access to the
server’s master secret, as the server is under the attacker’s
control. This means that our previous strategy of using a
simple string search for the master secret will not work here.

Instead, we located the tap point in the SSL-enabled mal-
ware using our keyfind plugin, which performs trial decryp-
tion on a packet sent by the malware using each possible
48-byte sequence written to memory as a key and verifies
whether the Message Authentication Code is valid. Al-
though this is much slower than a string match, it is the
only available option, since the key is not known in advance.

To test the plugin, we obtained a copy of a version of
the Sykipot trojan released around October 31st, 2012 [13]
(MD5: 34a1010846c0502f490f17b66fb05a12). We then cre-
ated a recording in which we executed the malware; simul-
taneously, we captured network traffic using tcpdump. We
noted that the malware made several encrypted connections
to https://www.hi-techsolutions.org/, and provided one
of the encrypted packets from these connections as input to
the keyfind plugin. The plugin found the same tap point as
the Windows 7 IE8 experiment described earlier, indicating
that both the malware and IE8 likely use the same under-
lying system mechanism to make SSL connections. The key
found was able to decrypt the connections contained in the
packet dump.7

6.2.2 Finding dmesg
System logs are an invaluable resource, both for security

and system administration. In an introspection-based secu-
rity system, for example, one might want to find a tap point
that contains the system’s logs so that they can be stored se-
curely outside the guest virtual machine. However, because
the format of system logs is particular to each OS, we need
some mechanism that can find tap points that write data
that “looks like” a log based on an exemplar. The statistical
search described in Section 4.2 is a good fit for this task:

7The malware also has a second layer of encryption, which
is custom and not based on SSL; we did not attempt to
decrypt this second layer.

by training on the output of dmesg on one OS, we can find
dmesg-like tap points on other systems.

To locate these system log tap points, we first created
a training exemplar by running the dmesg command on a
Debian sid (amd64) host and computing the bigram proba-
bilities for the output. We then created recordings in which
we booted five operating systems (Debian squeeze (armel),
Debian squeeze (amd64), Minix R3-2.0 (i386), FreeBSD 9.0-
RELEASE (i386), and Haiku R1 Alpha 3 (i386)), and com-
puted the same bigram statistics. We then sorted the tap
points seen in each operating system boot according to their
Jensen-Shannon distance from the training distribution, and
manually examined data written by the tap point for each of
the top 30 results in each operating system. Table 4 shows,
for each operating system tested, the tap point that we de-
termined to be the system log, and its rank in the search
results.

We can see that in all cases the correct result is in the top
10. There are two additional features of Table 4 that bear
mentioning. First, the reader will note that the two Debian
systems have a caller of “N/A”. This is because the memory
writes that make up dmesg are done in do_syslog, which
is called from multiple functions. In these cases, includ-
ing the caller splits up information that is semantically the
same. We detected this case by noticing that several of the
top-ranked results in the Linux experiments had the same
program counter, and that they appeared to contain differ-
ent sections of the same log. Second, the tap point found for
Haiku was also incomplete—some lines were truncated. By
using our tap point correlation plugin, we determined that
we were missing a second tap point that was correlated with
the main one; the two together formed the write portions of
a memcpy of the log messages. Once this second tap point
was included, we could see all the log messages produced by
Haiku.

We also attempted to find an analogous log message tap
point on Windows 7, but were not successful. This is a re-
sult of the way Windows logging works: rather than logging
string-based messages, applications and system services cre-
ate a manifest declaring possible log events, and then refer to
them by a generated numeric code. Human-readable mes-
sages are not stored, and instead are generated when the
user views the log. This means that there is no tap point

OS Caller PC Kernel? Rank
FreeBSD (x86) msglogstr+0x28 msgbuf_addstr+0x19a Yes 1
Haiku (x86) ring_buffer_peek+0x59 memcpy_generic+0x14 Yes 1
Debian (arm) N/A do_syslog+0x18c Yes 4
Debian (amd64) N/A do_syslog+0x163 Yes 4
Minix (x86) 0x190005ee 0x190009d4 No 8
Windows 7 (x86) Not Found Not Found ? ?

Table 4: Tap points that write the system log (dmesg) on several UNIX-like operating systems. All tap points
were located in the kernel, except for Minix, which is a microkernel. We were unable to find a tap point
analogous to dmesg in Windows.

that will contain log messages of the type used in our dmesg
training, and the methods described in this paper are largely
inapplicable unless a training example for the binary format
can be found. However, because the event log query API is
public [23], existing tools such as Virtuoso [11] might be a
better fit for this use case.

Anecdotally, the ability to uncover a tap point that writes
the kernel logs has also been useful for diagnosing problems
when adding support for new platforms to QEMU. For an
unrelated research task, we attempted to boot the Rasp-
berry Pi [1] kernel inside QEMU, but found that it hung
without displaying any output early on in the boot process.
By locating the dmesg tap point, we discovered that the last
log message printed was “Calibrating delay loop...”; based
on this we determined that the guest was hung waiting for
a timer interrupt that was not yet implemented in QEMU.

6.3 Unknown Unknowns: Clustering
To test the effectiveness of clustering tap points based

on bigram statistics and Jensen-Shannon distance, we car-
ried out an experiment that compared the clusters gener-
ated algorithmically to a set of labels generated by two of
the co-authors manually examining the data. We created six
recordings representing different workloads on two operating
systems (Windows 7 and FreeBSD 9.0). From FreeBSD, we
took recordings of boot, shutdown, running applications (ps,
cat, ls, top, and vi), and a one-minute recording of the sys-
tem sitting idle, for a total of four recordings. On Windows
we created two recordings: running applications (cmd.exe,
dir, the Task Manager, Notepad), and one minute of the
system sitting idle.8

Next, we sampled a subset of the tap points found in each
recording. Given that the vast majority of tap points do not
write interesting information, we opted not to sample uni-
formly from the all tap points found. Instead, we performed
an initial k-means clustering with k = 100, and then picked
out tap points at various distances from each cluster cen-
ter. We chose the tap point at σ standard deviations from
the center, for σ ∈ {0, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0} for a
total of 2,926 samples9. Finally, we dumped the data from
each of the sampled tap points, blinded them by assigning
each a unique id, and then provided the data files to our two

8Although we would have preferred to include Windows
boot and shutdown recordings, at the time our replay sys-
tem had a bug (now fixed) that prevented these recordings
from being replayed.
9The alert reader will note that this is smaller than the 4,800
samples one would expect from taking 8 samples from 100
clusters in each of 6 recordings. This is because some clusters
did not have very high variance, and so in many cases there
were fewer than 8 samples at the required distance from the
center.

labelers. Each labeler independently assigned labels to each
of the samples using the labels described in Table 5, and the
two labelers then worked together to reconcile their labels.

Finally, we ran a k-means clustering with k = 10; 10 was
chosen because it was a round number reasonably close to
the number of labels our human evaluators gave to the data.
We then used the Adjusted Rand Index [14] to score the
quality of our clustering relative to our hand-labeled exam-
ples. The Adjusted Rand Index for a clustering ranges from
-1 to 1; clusterings which are independent of the hand label-
ing will receive a score that is negative or close to zero. As
can be seen in Table 6, our clustering did not match up very
well on the hand-labeled samples. Note, however, that la-
beling criteria were selected without knowledge of the sizes
of categories or whether or not the distance metric would
effectively discriminate, so it is perhaps unsurprising that
the correspondence is poor.

There is some hope, however. Regardless of the appar-
ently poor clustering performance with respect to hand-
labeling, we decided to determine if the clusters from our
100-mean clustering of FreeBSD’s boot process contained
new and interesting data and if finding that data would be
facilitated by them. First, we determined to which of the
clusters data from the FreeBSD’s dmesg and filename tap
points (found in Sections 6.2.2 and 6.1.3) was assigned. We
were heartened to learn that these two text-like tap points
had been sent to the same cluster. We proceeded to explore
this cluster of approximately 5000 tap points, and found
that, indeed, the vast majority of the tap points contained
readable text of some sort. Further, in the course of about
thirty minutes of spelunking around this cluster, we found
not only kernel messages and filenames but a stone soup of
shell scripts, process listings kernel configuration, GraphViz
data, and so on. A selection of these tap point contents is
provided in Appendix 9. We did not exhaustively examine
this cluster, but plan to do so soon, as it appears to contain
much of interest for active monitoring. If clustering has fo-
cused us on one out of 100 clusters, this is potentially a big
savings.

6.4 Accuracy
Leaving aside the clustering results for the moment, the

analyses implemented in TZB are extremely effective at help-
ing to identify interposition points for active monitoring. In
the evaluations based on string searching, we found that the
number of tap points we had to look at manually was at most
262 (URLs under IE8) and in the best case we only had to
examine two tap points (for SSL keys under Firefox, Opera,
Haiku, and OpenSSL on ARM). The number of tap points
that need to be examined is related to how widely the data
is propagated in the system and how common the string be-

Abbrv. Description Count
bp binary pattern 2318
rd repeated dword 400
mz mostly zero 141
rq repeated quadword 19
fnu filenames unicode 8
woa words ascii 8
wou words unicode 7
inu integers unicode 6
bu binary uniform 5
ura URLs ascii 5
rs repeated short 4
fna filenames ascii 2
rb repeated byte 2
vr very redundant 1

Table 5: Labels given to the sampled tap points by
human evaluators, along with the number of times
each occurred.

Recording ARI
FreeBSD Apps 0.018
FreeBSD Boot 0.048
FreeBSD Idle 0.021
FreeBSD Shutdown 0.074
Win7 Apps 0.029
Win7 Idle -0.003

Table 6: Quality of clustering as measured by the
Adjusted Rand Index, which ranges from -1 to 1,
with 1 being a clustering that perfectly matches the
hand-labeled examples.

ing searched for is; thus, it is natural that URLs visited in
the browser would appear in many tap points, whereas the
SSL/TLS master key would not. Qualitatively speaking, we
found that once the candidate tap points had been selected
by stringsearch for a given execution, it took at most an
hour to find one that sufficed for the task at hand.

For the dmesg evaluation, we also examined the quality of
the results found for each operating system using the stan-
dard “Precision at 10” metric, which is just the number of
results found in the top 10 that were actually relevant to
the query. In this case, this is simply the fraction of results
in the top 10 that appeared to contain the system log (even
if it was incomplete). Based on this metric, the precision
of our retrieval was between 20% (on Minix) and 100% (on
Haiku). This means that if one looked at all of the top 10
entries, it is guaranteed that one would find the correct tap
point.

7. LIMITATIONS AND FUTURE WORK
Although TZB is currently very useful for finding intercep-

tion points for active monitoring, it is not currently usable
in every scenario where introspection is needed. Because the
interception points are triggered by executing code, they are
only usable in online analysis. However, the need for intro-
spection also arises in post-mortem analysis, specifically in
forensic memory analysis. Whereas previous solutions such
as Virtuoso [11] were able to operate equally well on memory
images or live virtual machines, TZB is only applicable to
the live case. In future work, we hope to combine Virtuoso-
like techniques with TZB to produce offline programs that
can locate in memory the buffers on which TZB’s tap points
operate.

Another limitation of TZB is its reliance on callstack in-
formation to locate interposition points. In current systems,
keeping track of an arbitrary number of callers for each pro-
cess is prohibitively expensive; although stack walking is
faster (since it only needs to be invoked when the monitored
code is executed), it is insecure, unreliable, and not available
on every architecture. We hope to examine how existing so-
lutions such as compiler modifications [32, 8] or dynamic
binary translation [27] can be used to efficiently maintain
the shadow stack information needed for TZB. We also note
that Intel’s Haswell architecture, which as of this writing has
just been released, has hardware support for keeping track
of calls and returns [33]; this would provide an excellent base
on which to build a low-overhead security system based on
TZB tap points.

Code generated at runtime (i.e., JIT or injected code) may
make re-identification of a discovered tap point difficult or
even impossible. Given the rise of languages that depend on
JIT runtimes, better solutions are needed for this scenario,
and the problem of how to make use of tap points in JIT
code should be explored further.

Finally, as seen in Section 6.3, the clustering results are
promising, but not yet fully developed. We hope to gain a
better understanding of the data found in tap points and
seek out better features and models for clustering in future
work.

8. RELATED WORK
Although, to our knowledge, there is no existing work on

mining the contents of memory accesses for introspection,
we drew inspiration from a variety of sources. These can
be roughly grouped into three categories: work on automat-
ing virtual machine introspection, research on automated re-
verse engineering, and efforts that examine memory access
patterns, typically through visualization. In this section, we
describe in more detail previous work in these three areas.

Virtual machine introspection has been targeted for au-
tomation by several recent research efforts because of the
semantic gap problem: security applications running outside
the guest virtual machine need to reconstruct high-level in-
formation from low-level data sources, but doing so requires
knowledge of internal data structures and algorithms that
is costly to acquire and maintain. To address this problem,
researchers have sought ways of bridging this gap automati-
cally. Virtuoso [11] uses dynamic traces of in-guest programs
to extract out-of-guest tools that compute the same infor-
mation. However, because it is based on dynamic analysis,
incomplete training may cause the generated programs to
malfunction. Two related approaches attempt to address
this limitation: process out-grafting [30] moves monitored
processes to the security VM while redirecting their sys-
tem calls to the guest VM, allowing tools in the security
VM to directly examine the process, while VMST [12] se-
lectively redirects the memory accesses of tools like ps and
netstat from the security VM so that their results are ob-
tained from the guest VM. TZB extends these approaches
by finding points in applications and the OS at which to
perform active monitoring.

Based on the observation that memory accesses in dy-
namic execution can reveal the structure of data in memory,
several papers have proposed methods for automatically de-
ducing the structure of protocols [6, 19, 9], file formats [10,
20], and in-memory data structures [17, 28, 21]. One par-

ticular insight we have drawn from this body of work is the
idea that the point in a program at which a piece of data
is accessed, along with its calling context, can be used as a
proxy for determining the type of the data. TZB leverages
this insight to separate out memory accesses into streams of
related data.

Finally, there has been some research on examining mem-
ory accesses made by a single program or a whole system,
typically using visualization. Burzstein et al. [5] found that
by visualizing the memory of online strategy games, they
could identify the region of memory used to decide how much
of the in-game map was visible to the player, which greatly
reduces the work required to create a “map hack” and al-
low the player to see the entire map at once. Outside the
academic world, the ICU64 visual debugger [22] allows users
to visualize and modify the entire memory of a Commodore
64 system, enabling a variety of cheats and enhancements
to C64 games. Although TZB does not use visualization,
it shares with this previous work the understanding that
memory accesses can be a rich source of information about
a running program.

9. CONCLUSION
In this paper we have presented TZB, a system that auto-

matically locates candidate memory accesses for active mon-
itoring of applications or operating systems. This is a task
that previously required extensive reverse engineering by do-
main experts. We have successfully used TZB to identify a
broad range of tap points, including ones to dynamically ex-
tract SSL keys, URLs typed into browsers, and the names
of files being opened. TZB is built atop the QEMU-based
PANDA platform as a set of plug-ins and its operation is
operating system and architecture agnostic, affording it im-
pressive scope for application. This is a powerful technique
that has already transformed how the authors perform RE
tasks. By reframing a difficult RE task as a principled search
through streaming data provided by dynamic analysis, TZB
allows manual effort to be refocused on more critical and
less automatable tasks like validation.

Acknowledgments
This material is based upon work supported in part by the
National Science Foundation under grants no. CNS-1017265
and no. CNS-0831300, and the Office of Naval Research un-
der grant no. N000140911042. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the National Science Foundation or the Office of
Naval Research.

10. REFERENCES
[1] Raspberry Pi: An ARM GNU/Linux box for $25.

http://www.raspberrypi.org/.

[2] D. Arthur and S. Vassilvitskii. k-means++: the
advantages of careful seeding. In Proceedings of the
ACM-SIAM symposium on Discrete algorithms, 2007.

[3] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh.
Clustering with Bregman divergences. J. Mach. Learn.
Res., 6, Dec. 2005.

[4] F. Bellard. QEMU, a fast and portable dynamic
translator. In USENIX Annual Technical Conference,
2005.

[5] E. Bursztein, M. Hamburg, J. Lagarenne, and
D. Boneh. OpenConflict: Preventing real time map
hacks in online games. In Proceedings of the IEEE
Symposium on Security and Privacy, 2011.

[6] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot:
automatic extraction of protocol message format using
dynamic binary analysis. In Proceedings of the ACM
conference on Computer and communications security,
2007.

[7] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A
platform for in-vivo multi-path analysis of software
systems. ACM SIGARCH Computer Architecture
News, 39(1), 2011.

[8] T. Chiueh and F. Hsu. RAD: a compile-time solution
to buffer overflow attacks. In International Conference
on Distributed Computing Systems, 2001.

[9] W. Cui, J. Kannan, and H. J. Wang. Discoverer:
automatic protocol reverse engineering from network
traces. In Proceedings of the USENIX Security
Symposium, 2007.

[10] W. Cui, M. Peinado, K. Chen, H. J. Wang, and
L. Irun-Briz. Tupni: automatic reverse engineering of
input formats. In Proceedings of the 15th ACM
conference on Computer and communications security,
2008.

[11] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and
W. Lee. Virtuoso: Narrowing the semantic gap in
virtual machine introspection. In Proceedings of the
IEEE Symposium on Security and Privacy, May 2011.

[12] Y. Fu and Z. Lin. Space traveling across VM:
Automatically bridging the semantic-gap in virtual
machine introspection via online kernel data
redirection. In Proceedings of the IEEE Symposium on
Security and Privacy, May 2012.

[13] K. Gilbert. Hurricane sandy serves as lure to deliver
Sykipot. http:
//securityblog.verizonbusiness.com/2012/10/31/

hurricane-sandy-serves-as-lure-to-deliver-sykipot/.

[14] L. Hubert and P. Arabie. Comparing partitions.
Journal of Classification, 2(1), 1985.

[15] J. Jarmoc. SSL/TLS interception proxies and
transitive trust. In Black Hat Europe, March 2012.

[16] S. Kullback and R. A. Leibler. On information and
sufficiency. Annals of Mathematical Statistics, 22,
1951.

[17] J. Lee, T. Avgerinos, and D. Brumley. TIE: Principled
reverse engineering of types in binary programs. In
Network and Distributed System Security Symposium,
2011.

[18] J. Lin. Divergence measures based on the Shannon
entropy. IEEE Trans. Inf. Theor., 37(1), Sept. 2006.

[19] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic
protocol format reverse engineering through
context-aware monitored execution. In Network and
Distributed Systems Symposium, 2008.

[20] Z. Lin and X. Zhang. Deriving input syntactic
structure from execution. In Proceedings of the ACM
SIGSOFT International Symposium on Foundations
of software engineering, 2008.

[21] Z. Lin, X. Zhang, and D. Xu. Automatic reverse
engineering of data structures from binary execution.

In Network and Distributed System Security
Symposium, 2010.

[22] mathfigure. ICU64: Real-time hacking of a C64
emulator.

[23] Microsoft Corporation. EvtQuery function.
http://msdn.microsoft.com/en-us/library/

windows/desktop/aa385466(v=vs.85).aspx.

[24] T. Müller, F. C. Freiling, and A. Dewald. TRESOR
runs encryption securely outside RAM. In Proceedings
of the 20th USENIX conference on Security, 2011.

[25] B. D. Payne, M. Carbone, M. Sharif, and W. Lee.
Lares: An architecture for secure active monitoring
using virtualization. In IEEE Symposium on Security
and Privacy, 2008.

[26] D. Rumsfeld. DoD news briefing - Secretary Rumsfeld
and Gen. Myers. February 2002.

[27] S. Sinnadurai, Q. Zhao, and W. Wong. Transparent
runtime shadow stack: Protection against malicious
return address modifications. http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.120.5702,
2008.

[28] A. Slowinska, T. Stancescu, and H. Bos. Howard: A
dynamic excavator for reverse engineering data
structures. In Network and Distributed Systems
Symposium, 2011.

[29] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager,
M. G. Kang, Z. Liang, J. Newsome, P. Poosankam,
and P. Saxena. BitBlaze: A new approach to
computer security via binary analysis. In Information
systems security. 2008.

[30] D. Srinivasan, Z. Wang, X. Jiang, and D. Xu. Process
out-grafting: an efficient “out-of-vm” approach for
fine-grained process execution monitoring. In
Proceedings of the ACM conference on Computer and
communications security, 2011.

[31] H. Steinhaus. Sur la division des corp materiels en
parties. Bull. Acad. Polon. Sci, 1, 1956.

[32] Vendicator. Stack shield: A “stack smashing”
technique protection tool for Linux.
http://www.angelfire.com/sk/stackshield/.

[33] Z. Yan. perf, x86: Haswell LBR call stack support.
http://lwn.net/Articles/535152/.

APPENDIX
A. SAMPLE TAP POINT CONTENTS

Here, we reproduce a selection of tap points from the same
cluster as dmesg and filename tap points.

/etc/rc.d/ipfw/etc/rc.d/NETWORKING/etc/rc.d/netwait/etc/rc
.d/mountcritremote/etc/rc.d/devfs/etc/rc.d/ipmon/etc/rc.d/
mdconfig2/etc/rc.d/newsyslog

r=/sNsnWs/fuiebu/ r=ceremdsecd_t_co_artpachg=tSooadSebaabf
/faa_N_=_peOfA=fA=feTr=tul.n=_eo/.b_Yt_vtectvifat=a=-sd_Ee
Ofu=u_0y:nF:tRseeeeEfciOtmdtuinlrlrrlpp/nppfpcepinl=l=.llN
lNlgllpl_.4l_l_2/l_l_22lileldlylo- 21laltlat=rrrsbgrskgni/

russian|Russian Users Accounts: :charset=KOI8-R: :
lang=ru_RU.KOI8-R: : :passwd_format=md5: :co
pyright=/etc/COPYRIGHT: :welcome=/etc/motd: :sete
nv=MAIL=/var/mail/$,BLOCKSIZE=K,FTP_PASSIVE_MODE=YES:

nss_compat.so.1dhclientShared object ‘‘nss_compat.so.1’’ n

PART
ada0
r#2

r1w0e0

ada0
r1w0e0
err#0

DISK
ada0
r#1

ada0p3
r0w0e0
err#0

ada0p2
r1w0e0
err#0

ada0p1
r0w0e0
err#0

LABEL
ada0p3
r#3

r0w0e0

gptid/85a9469d-3e8f-11e2-80e5-525400123456
r0w0e0
err#0

LABEL
ada0p2
r#3

r0w0e0

gptid/85a1fb05-3e8f-11e2-80e5-525400123456
r0w0e0
err#0

LABEL
ada0p2
r#3

r0w0e0

ufsid/50bec59dcc135902
r0w0e0
err#0

LABEL
ada0p1
r#3

r0w0e0

gptid/859ead5b-3e8f-11e2-80e5-525400123456
r0w0e0
err#0

VFS
�s.ada0p2

r#3

r1w0e0

DISK
cd0
r#1

cd0
r0w0e0
err#0

DEV
gptid/85a9469d-3e8f-11e2-80e5-525400123456

r#4

r0w0e0

DEV
gptid/85a1fb05-3e8f-11e2-80e5-525400123456

r#4

r0w0e0

DEV
ufsid/50bec59dcc135902

r#4

r0w0e0

DEV
gptid/859ead5b-3e8f-11e2-80e5-525400123456

r#4

r0w0e0

DEV
cd0
r#2

r0w0e0

DEV
ada0p3
r#3

r0w0e0

DEV
ada0p2
r#3

r0w0e0

DEV
ada0p1
r#3

r0w0e0

DEV
ada0
r#2

r0w0e0

Figure 4: Detail from rendering of Graphviz file cap-
tured from a FreeBSD boot tap point, apparently
depicting disk geometry

ot found, required by ‘‘dhclient’’nss_nis.so.1dhclientShar
ed object ‘‘nss_nis.so.1’’ not found, required by ‘‘dhclie
nt’’nss_files.so.1dhclientShared object ‘‘nss_files.so.1’’

digraph geom {
z0xc1d8de00 [shape=box,label=’’PART\nada0\nr#2’’];
z0xc1f4f640 [label=’’r1w0e0’’];
z0xc1f4f640 -> z0xc1e9eb00;

/sbin/in/bin/sh/bin/stt/sbin/sysctl/bin/ps/sbin/sysctl/sbi
n/rcorde/bin/cat/sbin/md/sbin/sysctl/sbin/sysctl/bin/ken/s
bin/dumpon/bin/ln/bin/ps/sbin/sysctl/sbin/sysctl/sbin/sysc
tl/sbin/sysctl/bin/ps/bin/dd/sbin/sysctl/bin/dat/bin/df/sb

/boot/kernel/kernel00000000-0000-0000-0000-000000000000000
00000-0000-0000-0000-00000000000000000000-0000-0000-0000-0
00000000000993c915d-3e9f-11e2-a557-525400123456993c915d-3e
9f-11e2-a557-525400123456/boot/kernel/kernel/boot/kernel/k
...
modulesoptions CONFIG_AUTOGENERATED
ident GENERIC
machine i386
cpu I686_CPU
cpu I586_CPU
cpu I486_CPU

<mesh>
<class id=’’0xc10362c0’’>
<name>FD</name>

</class>
<class id=’’0xc1009a80’’>

#!/bin/sh
#
$FreeBSD: release/9.0.0/etc/rc.d/newsyslog 197947 2009-1
0-10 22:17:03Z dougb $
...
set_rcvar()
{

case $# in
0)

echo ${name}_enable
;;

1)

