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The rapid proliferation of wireless networks and mobile computing applications has changed the landscape of network

security. The traditional way of protecting networks with firewalls and encryption software is no longer sufficient and

effective. We need to search for new architecture and mechanisms to protect the wireless networks and mobile computing

application.

In this paper, we examine the vulnerabilities of wireless networks and argue that we must include intrusion detection

in the security architecture for mobile computing environment. We have developed such an architecture and evaluated

a key mechanism in this architecture, anomaly detection for mobile ad-hoc network, through simulation experiments.
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1. Introduction

The rapid proliferation of wireless networks and mo-

bile computing applications has changed the landscape

of network security. The nature of mobility creates new

vulnerabilities that do not exist in a fixed wired net-

work, and yet many of the proven security measures

turn out to be ineffective. Therefore, the traditional

way of protecting networks with firewalls and encryp-

tion software is no longer sufficient. We need to develop

new architecture and mechanisms to protect the wire-

less networks and mobile computing applications.

The implication of mobile computing on network se-

curity research can be further demonstrated by the fol-

low case. Recently (Summer 2001) an Internet worm

called Code Red has spread rapidly to infect many of the

Windows-based server machines. To prevent this type

of worm attacks from spreading into intranets, many

∗ This paper was accepted for publication in ACM MONET Jour-

nal in 2002 and appear in this issue of ACM WINET due to

editorial constraints.

companies rely on firewalls to protect the internal net-

works. However, there are multiple incidents that the

Code Red worm has been caught from within the in-

tranet, largely due to the use of mobile computers. As

more and more business travelers are carrying laptops

and more and more public venues (e.g. conferences)

provide wireless Internet access, there are higher and

higher chances that an inadequately protected laptop

will be infected with worms. For example, in a recent

IETF meeting, among the hundreds of attendees that

carry laptops, a dozens have been detected to be in-

fected with Code Red worm. When these laptops are

later integrated back into their company networks, they

can spread the worms from within and deem the fire-

walls useless in defending this worm.

1.1. Vulnerabilities of Mobile Wireless Networks

The nature of mobile computing environment makes

it very vulnerable to an adversary’s malicious attacks.

First of all, the use of wireless links renders the network
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susceptible to attacks ranging from passive eavesdrop-

ping to active interfering. Unlike wired networks where

an adversary must gain physical access to the network

wires or pass through several lines of defense at firewalls

and gateways, attacks on a wireless network can come

from all directions and target at any node. Damages can

include leaking secret information, message contamina-

tion, and node impersonation. All these mean that a

wireless ad-hoc network will not have a clear line of de-

fense, and every node must be prepared for encounters

with an adversary directly or indirectly.

Second, mobile nodes are autonomous units that are

capable of roaming independently. This means that

nodes with inadequate physical protection are receptive

to being captured, compromised, and hijacked. Since

tracking down a particular mobile node in a global scale

network cannot be done easily, attacks by a compro-

mised node from within the network are far more dam-

aging and much harder to detect. Therefore, mobile

nodes and the infrastructure must be prepared to oper-

ate in a mode that trusts no peer.

Third, decision-making in mobile computing environ-

ment is sometimes decentralized and some wireless net-

work algorithms rely on the cooperative participation

of all nodes and the infrastructure. The lack of central-

ized authority means that the adversaries can exploit

this vulnerability for new types of attacks designed to

break the cooperative algorithms.

For example, many of the current MAC protocols for

wireless channel access are vulnerable. Although there

are many types of MAC protocols, the basic working

principles are similar. In a contention-based method,

each node must compete for control of the transmis-

sion channel each time it sends a message. Nodes must

strictly follow the pre-defined procedure to avoid col-

lisions and to recover from them. In a contention-free

method, each node must seek from all other nodes a

unanimous promise of an exclusive use of the channel

resource, on a one-time or recurring basis. Regardless of

the type of MAC protocol, if a node behaves maliciously,

the MAC protocol can break down in a scenario resem-

bling a denial-of-service attack. Although such attacks

are rare in wired networks because the physical net-

works and the MAC layer are isolated from the outside

world by layer-3 gateways/firewalls, every mobile node

is completely vulnerable in the wireless open medium.

Furthermore, mobile computing has introduced new

type of computational and communication activities

that seldom appear in fixed or wired environment. For

example, mobile users tend to be stingy about commu-

nication due to slower links, limited bandwidth, higher

cost, and battery power constraints; mechanisms like

disconnected operations [24] and location-dependent

operations only appear to mobile wireless environment.

Unsurprisingly, security measures developed for wired

network are likely inept to attacks that exploit these

new applications.

Applications and services in a mobile wireless net-

work can be a weak link as well. In these networks,

there are often proxies and software agents running in

base-stations and intermediate nodes to achieve per-

formance gains through caching, content transcoding,

or traffic shaping, etc. Potential attacks may target

these proxies or agents to gain sensitive information or

to mount DoS attacks, such as flushing the cache with

bogus references, or having the content transcoder do

useless and expensive computation.

To summarize, a mobile wireless network is vulnera-

ble due to its features of open medium, dynamic chang-

ing network topology, cooperative algorithms, lack of

centralized monitoring and management point, and lack

of a clear line of defense. Future research is needed to

address these vulnerabilities.

1.2. The Need for Intrusion Detection

Intrusion prevention measures, such as encryption

and authentication, can be used in ad-hoc networks

to reduce intrusions, but cannot eliminate them. For

example, encryption and authentication cannot defend

against compromised mobile nodes, which often carry

the private keys. Integrity validation using redundant

information (from different nodes), such as those being

used in secure routing [25,27], also relies on the trust-

worthiness of other nodes, which could likewise be a

weak link for sophisticated attacks.

The history of security research has taught us a valu-

able lesson – no matter how many intrusion prevention

measures are inserted in a network, there are always

some weak links that one could exploit to break in (just

like the example at the beginning of this paper). Intru-

sion detection presents a second wall of defense and it

is a necessity in any high-survivability network.

In summary, mobile computing environment has in-

herent vulnerabilities that are not easily preventable.
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To secure mobile computing applications, we need to

deploy intrusion detection and response techniques, and

further research is necessary to adapt these techniques

to the new environment, from their original applications

in fixed wired network. In this paper, we focus on a

particular type of mobile computing environment called

mobile ad-hoc networks and propose a new model for

intrusion detection and response for this environment.

We will first give a background on intrusion detection,

then present our new architecture, followed by an ex-

perimental study to evaluate its feasibility.

2. Intrusion Detection and the Challenges of

Mobile Ad-Hoc Networks

2.1. Background on Intrusion Detection

When an intrusion (defined as “any set of actions

that attempt to compromise the integrity, confidential-

ity, or availability of a resource” [8]) takes place, in-

trusion prevention techniques, such as encryption and

authentication (e.g., using passwords or biometrics),

are usually the first line of defense. However, intru-

sion prevention alone is not sufficient because as sys-

tems become ever more complex, and as security is still

often the after-thought, there are always exploitable

weaknesses in the systems due to design and program-

ming errors, or various “socially engineered” penetra-

tion techniques. For example, even though they were

first reported many years ago, exploitable “buffer over-

flow” security holes, which can lead to an unauthorized

root shell, still exist in some recent system softwares.

Furthermore, as illustrated by the Distributed Denial-

of-Services (DDoS) attacks launched against several

major Internet sites where security measures were in

place, the protocols and systems that are designed to

provide services (to the public) are inherently subject

to attacks such as DDoS. Intrusion detection can be

used as a second wall to protect network systems be-

cause once an intrusion is detected, e.g., in the early

stage of a DDoS attack, response can be put into place

to minimize damages, gather evidence for prosecution,

and even launch counter-attacks.

The primary assumptions of intrusion detection are:

user and program activities are observable, for example

via system auditing mechanisms; and more importantly,

normal and intrusion activities have distinct behavior.

Intrusion detection therefore involves capturing audit

data and reasoning about the evidence in the data to

determine whether the system is under attack. Based

on the type of audit data used, intrusion detection sys-

tems (IDSs) can be categorized as network-based or

host-based. A network-based IDS normally runs at the

gateway of a network and “captures” and examines net-

work packets that go through the network hardware in-

terface. A host-based IDS relies on operating system

audit data to monitor and analyze the events generated

by programs or users on the host. Intrusion detection

techniques can be categorized into misuse detection and

anomaly detection.

Misuse detection systems, e.g., IDIOT [15] and

STAT [9], use patterns of well-known attacks or weak

spots of the system to match and identify known intru-

sions. For example, a signature rule for the “guessing

password attack” can be “there are more than 4 failed

login attempts within 2 minutes”. The main advantage

of misuse detection is that it can accurately and effi-

ciently detect instances of known attacks. The main

disadvantage is that it lacks the ability to detect the

truly innovative (i.e., newly invented) attacks.

Anomaly detection (sub)systems, for example, the

anomaly detector in IDES [18], flag observed activities

that deviate significantly from the established normal

usage profiles as anomalies, i.e., possible intrusions. For

example, the normal profile of a user may contain the

averaged frequencies of some system commands used in

his or her login sessions. If for a session that is be-

ing monitored, the frequencies are significantly lower or

higher, then an anomaly alarm will be raised. The main

advantage of anomaly detection is that it does not re-

quire prior knowledge of intrusion and can thus detect

new intrusions. The main disadvantage is that it may

not be able to describe what the attack is and may have

high false positive rate.

2.2. Problems of Current IDS Techniques

The vast difference between the fixed network where

current intrusion detection research are taking place

and the mobile ad-hoc network which is the focus of

this paper makes it very difficult to apply intrusion de-

tection techniques developed for one environment to an-

other. The most important difference is perhaps that

the latter does not have a fixed infrastructure, and to-

day’s network-based IDSs, which rely on real-time traf-

fic analysis, can no longer function well in the new en-
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vironment. Compared with wired networks where traf-

fic monitoring is usually done at switches, routers and

gateways, the mobile ad-hoc environment does not have

such traffic concentration points where the IDS can col-

lect audit data for the entire network. Therefore, at any

one time, the only available audit trace will be limited

to communication activities taking place within the ra-

dio range, and the intrusion detection algorithms must

be made to work on this partial and localized informa-

tion.

Another significant big difference is in the commu-

nication pattern in a mobile computing environment.

As we have mentioned earlier, mobile users tend to be

stingy about communication and often adopt new oper-

ation modes such as disconnected operations [24]. This

suggests that the anomaly models for wired network

cannot be used as is.

Furthermore, there may not be a clear separation

between normalcy and anomaly in mobile environment.

A node that sends out false routing information could be

the one that has been compromised, or merely the one

that is temporarily out of sync due to volatile physical

movement. Intrusion detection may find it increasingly

difficult to distinguish false alarms from real intrusions.

In summary, we must answer the following research

questions in developing a viable intrusion detection sys-

tem for mobile ad-hoc networks:

• What is a good system architecture for building in-

trusion detection and response systems that fits the

features of mobile ad-hoc networks?

• What are the appropriate audit data sources? How

do we detect anomaly based on partial, local audit

traces – if they are the only reliable audit source?

• What is a good model of activities in a mobile com-

puting environment that can separate anomaly when

under attacks from the normalcy?

3. An Architecture for Intrusion Detection

Intrusion detection and response systems should be

both distributed and cooperative to suite the needs of

mobile ad-hoc networks. In our proposed architecture

(Figure 1), every node in the mobile ad-hoc network

participates in intrusion detection and response. Each

node is responsible for detecting signs of intrusion lo-

cally and independently, but neighboring nodes can col-

laboratively investigate in a broader range.

cooperative
detection engine

secure communication

IDS agent

neighboring
IDS agents

global responselocal response

system calls activities
communication activities

other traces, ...

local
detection engine

local
data collection

Figure 2. A Conceptual Model for an IDS Agent

In the systems aspect, individual IDS agents are

placed on each and every node. Each IDS agent runs

independently and monitors local activities (including

user and systems activities, and communication activ-

ities within the radio range). It detects intrusion from

local traces and initiates response. If anomaly is de-

tected in the local data, or if the evidence is inconclu-

sive and a broader search is warranted, neighboring IDS

agents will cooperatively participate in global intrusion

detection actions. These individual IDS agent collec-

tively form the IDS system to defend the mobile ad-hoc

network.

The internal of an IDS agent can be fairly complex,

but conceptually it can be structured into six pieces

(Figure 2). The data collection module is responsi-

ble for gathering local audit traces and activity logs.

Next, the local detection engine will use these data

to detect local anomaly. Detection methods that need

broader data sets or that require collaborations among

IDS agents will use the cooperative detection engine.

Intrusion response actions are provided by both the lo-

cal response and global response modules. The local

response module triggers actions local to this mobile

node, for example an IDS agent alerting the local user,

while the global one coordinates actions among neigh-

boring nodes, such as the IDS agents in the network

electing a remedy action. Finally, a secure communica-

tion module provides a high-confidence communication

channel among IDS agents.
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Figure 1. The IDS Architecture for Wireless Ad-Hoc Network

3.1. Data Collection

The first module, local data collection, gathers

streams of real-time audit data from various sources.

Depending on the intrusion detection algorithms, these

useful data streams can include system and user activ-

ities within the mobile node, communication activities

by this node, as well as communication activities within

the radio range and observable by this node. There-

fore, multiple data collection modules can coexist in

one IDS agents to provide multiple audit streams for a

multi-layer integrated intrusion detection method (Sec-

tion 3.5).

3.2. Local Detection

The local detection engine analyzes the local data

traces gathered by the local data collection module for

evidence of anomalies. It can include both misuse de-

tections or anomaly detection (Section 2.1). Because

it is conceivable that the number of newly created at-

tack types mounted on mobile computing environment

will increase quickly as more and more network appli-

ances become mobile and wireless, anomaly detection

techniques will play a bigger role. We will have fur-

ther discussion on anomaly detection in mobile wireless

environment in Section 4.

3.3. Cooperative Detection

Any node that detects locally a known intrusion or

anomaly with strong evidence (i.e., the detection rule

triggered has a very high accuracy rate, historically),

can determine independently that the network is under

attack and can initiate a response. However, if a node

detects an anomaly or intrusion with weak evidence,

or the evidence is inconclusive but warrants broader in-

vestigation, it can initiate a cooperative global intrusion

detection procedure. This procedure works by propa-

gating the intrusion detection state information among

neighboring nodes (or further downward if necessary).

The intrusion detection state information can range

from a mere level-of-confidence value such as

• “With p% confidence, node A concludes from its lo-

cal data that there is an intrusion”

• “With p% confidence, node A concludes from its lo-

cal data and neighbor states that there is an intru-

sion”

• “With p% confidence, node A, B, C, ... collectively

conclude that there is an intrusion”

to a more specific state that lists the suspects, like

• “With p% confidence, node A concludes from its lo-

cal data that node X has been compromised”

or to a complicated record including the complete evi-

dence.

As the next step, we can derive a distributed con-

sensus algorithm to compute a new intrusion detection

state for this node, using other nodes’ state information

received recently. The algorithm can include a weighted

computation under the assumption that nearby nodes

have greater effects than far away nodes, i.e., giving the

immediate neighbors the highest values in evaluating

the intrusion detection states.

For example, a majority-based distributed intrusion

detection procedure can include the following steps:

• the node sends to neighboring node an “intrusion (or

anomaly) state request”;
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• each node (including the initiation node) then propa-

gates the state information, indicating the likelihood

of an intrusion or anomaly, to its immediate neigh-

bors;

• each node then determines whether the majority

of the received reports indicate an intrusion or

anomaly; if yes, then it concludes that the network

is under attack;

• any node that detects an intrusion to the network

can then initiate the response procedure.

The rationales behind this scheme are as follows. Au-

dit data from other nodes cannot be trusted and should

not be used because the compromised nodes can send

falsified data. However, the compromised nodes have

no incentives to send reports of intrusion/anomaly be-

cause the intrusion response may result in their expul-

sion from the network. Therefore, unless the majority

of the nodes are compromised, in which case one of the

legitimate nodes will probably be able to detect the in-

trusion with strong evidence and will respond, the above

scheme can detect intrusion even when the evidence at

individual nodes is weak.

A mobile network is highly dynamic because nodes

can move in and out of the network. Therefore, while

each node uses intrusion/anomaly reports from other

nodes, it does not rely on fixed network topology or

membership information in the distributed detection

process. It is a simple majority voting scheme where

any node that detects an intrusion can initiate a re-

sponse.

3.4. Intrusion Response

The type of intrusion response for mobile ad-hoc net-

works depends on the type of intrusion, the type of net-

work protocols and applications, and the confidence (or

certainty) in the evidence. For example, here is a few

likely response:

• Re-initializing communication channels between nodes

(e.g, force re-key).

• Identifying the compromised nodes and re-organizing

the network to preclude the promised nodes.

For example, the IDS agent can notify the end-

user, who may in turn do his/her own investigation

and take appropriate action. It can also send a “re-

authentication” request to all nodes in the network to

prompt the end-users to authenticate themselves (and

hence their mobile nodes), using out-of-bound mecha-

nisms (like, for example, visual contacts). Only the re-

authenticated nodes, which may collectively negotiate a

new communication channel, will recognize each other

as legitimate. That is, the compromised/malicious

nodes can be excluded.

3.5. Multi-Layer Integrated Intrusion Detection and

Response

Traditionally, IDSs use data only from the lower lay-

ers: network-based IDSs analyze TCP/IP packet data

and host-based IDSs analyze system call data. This is

because in wired networks, application layer firewalls

can effectively prevent many attacks, and application-

specific modules, e.g., credit card fraud detection sys-

tems, have also been developed to guard the mission-

critical services.

In the wireless networks, there are no firewalls to pro-

tect the services from attack. However, intrusion detec-

tion in the application layer is not only feasible, as dis-

cussed in the previous section, but also necessary. Cer-

tain attacks, for example, an attack that tries to create

an unauthorized access “back-door” to a service, may

seem perfectly legitimate to the lower layers, e.g., the

MAC protocols. We also believe that some attacks may

be detected much earlier in the application layer, be-

cause of the richer semantic information available, than

in the lower layers. For example, for a DoS attack, the

application layer may detect very quickly that a large

number of incoming service connections have no actual

operations or the operations don’t make sense (and can

be considered as errors); whereas the lower layers, which

rely only on information about the amount of network

traffic (or the number of channel requests), may take a

longer while to recognize the unusually high volume.

Given that there are vulnerabilities in multiple layers

of mobile wireless networks and that an intrusion detec-

tion module needs to be placed at each layer on each

node of a network, we need to coordinate the intrusion

detection and response efforts. We use the following

integration scheme:

• if a node detects an intrusion that affects the entire

network, e.g., when it detects an attack on the ad hoc

routing protocols, it initiates the re-authentication
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process to exclude the compromised/malicious nodes

from the network;

• if a node detects a (seemingly) local intrusion at a

higher layer, e.g., when it detects attacks to one of

its services, lower layers are notified. The detection

modules there can then further investigate, e.g., by

initiating the detection process on possible attacks

on ad hoc routing protocols, and can respond to the

attack by blocking access from the offending node(s)

and notifying other nodes in the network of the in-

cident.

In this approach, the intrusion detection module at

each layer still needs to function properly, but detection

on one layer can be initiated or aided by evidence from

other layers. As a first cut of our experimental research,

we allow the evidence to flow from one layer to its (next)

lower layer by default, or to a specific lower layer based

on the application environment.

The “augmented” versions of the detection model at

a lower level are constructed as follows. In the “testing”

process, the anomaly decision, i.e., either 1 for “yes”

or 0 for “no” from the upper layer is inserted into the

deviation score of the lower level, for example, (0.1, 0.1)

now becomes (0.1, 0.1, 0). In other words, the deviation

data also carries the extra information passed from the

upper level. An anomaly detection model built from

the augmented data therefore combines the bodies of

evidence from the upper layers and the current layer

and can make a more informed decision. The intrusion

report sent to other node for cooperative detection also

includes a vector of the information from the layers.

With these new changes, the lower layers now need

more than one anomaly detection model: one that relies

on the data of the current layer and therefore indirectly

uses evidence from the lower layers, and the augmented

one that also considers evidence from the upper layer.

Multi-layer integration enables us to analyze the at-

tack scenario in its entirety and as a result, we can

achieve better performance in terms of both higher true

positive and lower false positive rates. For example, a

likely attack scenario is that an adversary takes control

of the mobile unit of a user (by physically disable him

or her), and then uses some system commands to send

falsified routing information. A detection module that

monitors user behavior, e.g., via command usage, can

detect this event and immediately (i.e., before further

damage can be done) cause the detection module for the

routing protocols to initiate the global detection and

response, which can result in the exclusion of this com-

promised unit. As another example, suppose the users

are responding to a fire alarm, which is a rare event and

may thus cause a lot of unusual movements and hence

updates to the routing tables. However, if there is no

indication that a user or a system software has been

compromised, each intrusion report sent to other nodes

will have a “clean” vector of upper layer indicators, and

thus the detection module for the routing protocols can

conclude that the unusual updates may be legitimate.

4. Anomaly Detection in Mobile Ad-Hoc

Networks

In this section, we discuss how to build anomaly de-

tection models for mobile wireless networks. Detection

based on activities in different network layers may differ

in the format and the amount of available audit data

as well as the modeling algorithms. However, we be-

lieve that the principle behind the approaches will be

the same. To illustrate our approach, we focus our dis-

cussions on ad-hoc routing protocols.

4.1. Building an Anomaly Detection Model

Framework The basic premise for anomaly detection

is that there is intrinsic and observable characteristic of

normal behavior that is distinct from that of abnormal

behavior. We use information-theoretic measures [5],

namely, entropy and conditional entropy, to describe

the characteristics of normal information flows and to

use classification algorithms to build anomaly detection

models. For example, we can use a classifier, trained us-

ing normal data, to predict what is normally the next

event given the previous n events. In monitoring, when

the actual event is not what the classifier has predicted,

there is an anomaly. When constructing a classifier,

features with high information gain (or reduction in en-

tropy) [20] are needed. That is, a classifier needs feature

value tests to partition the original (mixed and high en-

tropy) dataset into pure (and low entropy) subsets, each

ideally with one (correct) class of data.

Using this framework, we employ the following pro-

cedure for anomaly detection: a) select (or partition)

audit data so that the normal dataset has low (condi-

tional) entropy; b) perform appropriate data transfor-

mation according to the entropy measures (e.g., con-
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structing new features with high information gain); c)

compute classifier using training data; d) apply the clas-

sifier to test data; and e) post-process alarms to produce

intrusion reports.

Attack Models In this study, we only consider attacks

on routing protocols. In general, these attacks are in

the following forms [26]:

1. Route logic compromise This type of attacks be-

haves by manipulating routing information, either

externally by parsing false route messages or inter-

nally by maliciously changing routing cache infor-

mation. In particular, we consider several special

cases: (a) misrouting: forwarding a packet to an

incorrect node; and (b) false message propagation:

distributing a false route update.

2. Traffic pattern distortion This type of attacks

changes default/normal traffic behavior: (a) packet

dropping; (b) packet generation with faked source

address; (c) corruption on packet contents; and (d)

denial-of-service.

Notice that these two kinds of attacks can be com-

bined together in a single intrusion. In our study,

we implemented the following attacks in simulation:

(1) falsifying route paths/route entry in a node’s own

cache; and (2) random packet dropping. The first is

an abstraction of routing attacks because they resort

to changing the routing information for malicious pur-

poses. The second is simply traffic pattern distortion.

Each intrusion session we simulated includes only one of

these attack types. However, each execution trace can

contain several intrusion sessions with different attack

types.

Audit Data We suggest these two local data sources

be used for anomaly detection: (1) local routing in-

formation, including cache entries and traffic statistics;

and (2) position locator, or GPS, which we assume will

not be compromised and can therefore reliably provide

location and velocity information of nodes within the

whole neighborhood. We use only local information be-

cause remote nodes can be compromised and their data

cannot be trusted.

Feature Selection Feature selection is a critical step in

building a detection model. Specifically, since we use

classifiers as detectors, we need to select and/or con-

struct features, from the available audit data, that have

high information gain. The criteria of information gain

is not a priori. We use an unsupervised method to con-

struct the feature set. First, we constructed a large

feature set to cover a wide range of behaviors. It is not

efficient to run all experiments with all of these features.

A small number of training runs can be conducted with

the whole set of features on small audit data traces ran-

domly chosen from a previously stored audit logs. For

each training run, a corresponding model is built. The

features that appear in the models and has weights not

smaller than a minimum threshold are selected into the

essential feature set. For different routing protocols

and different scenarios, the essential feature set is dif-

ferent.

In practice, we expect the feature set needs to be

updated after certain period, as the characteristics of

routing behavior can change with time.

Classifier We use two classifiers in our study. One is

a decision-tree equivalent classifier, RIPPER [4], a rule

induction program. The other is a Support Vector Ma-

chine classifier, SVM Light [11]. RIPPER is a typical

classifier in that it searches the given feature space and

computes rules that separate data into appropriate (in-

tended) classes. SVM Light instead pre-processes the

data to represent patterns in much higher dimension

than the given feature space. The heuristic is that with

sufficiently high dimension, data can be separated by

a hyperplane, thus achieving the goal of classification.

SVM Light can produce a more accurate classifier than

RIPPER when there are underlying complex patterns

in the data that are not readily represented by the given

set of features.

Post-processing Given an execution trace, we first ap-

ply a detector to examine each observation. Then a

post-processing scheme is used to examine the predic-

tions and generate intrusion reports: (1) choose a pa-

rameter l and let the window size be 2l + 1; (2) for a

region covered by the current window, if there are more

abnormal predictions than normal predictions, i.e, the

number of abnormal observations is greater than l, then

the region is marked as “abnormal”; (3) label every ob-

servation within an abnormal region as “abnormal” and

every observation within a normal region as “normal”;

(4) shift the sliding window with one window size, i.e,

2l + 1, and repeat (2) and (3) until the whole trace is

processed; (5) count all continuous abnormal regions as
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one intrusion session. In our experiments, we use l = 3.

The intuition here is that a detection model can make

spurious errors and these false alarms should be filtered

out. In contrast, a true intrusion session has “locality”,

i.e., it tends to result in many alarms within a short

time window. Therefore, these alarms can be grouped

into a single intrusion report.

4.2. Detecting Abnormal Updates to Routing Tables

The main requirement of an anomaly detection

model, and intrusion detection systems in general, is low

false positive rate, calculated as the percentage of nor-

malcy variations detected as anomalies, and high true

positive rate, calculated as the percentage of anomalies

detected. We need to first determine the trace data to

be used that will bear evidence of normalcy or anomaly.

For ad-hoc routing protocols, since the main concern

is that the false routing information generated by a

compromised node will be disseminated to and used by

other nodes, we can define the trace data to describe,

for each node, the normal (i.e., legitimate) updates of

routing information.

A routing table usually contains, at the minimum,

the next hop to each destination node and the distance

(number of hops). A legitimate change in the rout-

ing table can be caused by the physical movement(s) of

node(s) or network membership changes. For a node,

its own movement and the change in its own routing

table are the only reliable information that it can trust.

Hence, we use data on the node’s physical movements

and the corresponding change in its routing table as the

basis of the trace data. The physical movement is mea-

sured mainly by distance and velocity (this data can be

obtained by a built-in GPS device). The routing table

change is measured mainly by the percentage of changed

routes (PCR), the (positive or negative) percentage of

changes in the sum of hops of all the routes (PCH), and

the percentage of newly added routes. We use percent-

ages as measurements because of the dynamic nature

of mobile networks (i.e., the number of nodes/routes is

not fixed). Table 1 shows some fictional trace data for

a node.

During the “training” process, where a diversity of

normal situations are simulated, the trace data is gath-

ered for each node. The trace data sets of all nodes in

the training network are then aggregated into a single

data set, which describes all normal changes in routing

Table 1

Sample Trace Data for Ad-Hoc Routing

Distance Velocity PCR PCH ...

0.01 0.1 20 15 ...

10 20 80 50 ...

0.02 0.1 0 0 ...

... ... ... ... ...

tables for all the nodes. A detection model which is

learned from this aggregated data set will therefore be

capable of operating on any node in the network.

A normal profile on the trace data in effect speci-

fies the correlation of physical movements of the node

and the changes in the routing table. We can use the

following scheme to compute the normal profile:

• denote PCR the class (i.e. concept), and distance,

velocity, and PCH, etc. the features describing the

concept;

• use n classes to represent the PCR values in n ranges,

for example, we can use 10 classes each representing

10 percentage points – that is, the trace data belongs

to n classes;

• apply a classification algorithm to the data to learn

a classifier for PCR;

• repeat the above for PCH, that is, learn a classifier

for PCH;

A classification algorithm, e.g., RIPPER [4], can use

the most discriminating feature values to describe each

concept. For example, when using PCR as the concept,

RIPPER can output classification rules in the form of:

“if (distance ≤ 0.01 AND PCH ≤ 20 AND ...) then

PCR = 2; else if ...”. Each classification rule (an “if”)

has a “confidence” value, calculated as the percentage

of records that match both the rule condition and rule

conclusion out of those that match the rule condition.

The classification rules for PCR and PCH together de-

scribe what are the (normal) conditions that correlate

with the (amount of) routing table changes. We use

these rules as the normal profiles.

Checking an observed trace data record (that records

a routing table update) with the profile involves apply-

ing the classification rules to the record. A misclassifi-

cation, e.g., when the rules say it is “PCR = 3” but in

fact it is “PCR = 5”, is counted as a violation. We can

use the “confidence” of the violated rule as the “devia-

tion score” of the record. In the “testing” process, the
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Table 2

Sample Deviation Data

PCR deviation PCH deviation Class

0.0 0.0 normal

0.1 0.0 normal

0.2 0.2 normal

0.9 0.5 abnormal

0.3 0.1 normal

... ... ...

deviation scores are recorded. For example, if abnormal

data is available, we can have deviation data like those

shown in Table 2. We can then apply a classification al-

gorithm to compute a classifier, a detection model, that

uses the deviation scores to distinguish abnormal from

normal.

If abnormal data is not available, we can compute

the normal clusters of the deviation scores, where each

score pair is represented by a point (PCR deviation,

PCH deviation) in the two-dimensional space, e.g., (0.0,

0.0), (0.2, 0.2), (0.3, 0.1), etc. The “outliers”, i.e., those

that do not belong to any normal cluster, can then be

considered as anomalies. Clustering is often referred

to as “un-supervised learning” because the target clus-

ters are not known a priori. Its disadvantage is that

the computation (i.e., the formation) of clusters is very

time consuming. If the application environment allows

a tolerable false alarm rate, e.g., 2%, then the cluster-

ing algorithm can be parameterized to terminate when

sufficient, e.g., greater than 98%, points are in proper

clusters.

A poor performance of the anomaly detection model,

e.g., a higher than acceptable false alarm rate, indicates

that the data gathering (including both “training” and

“testing” processes) is not sufficient, and/or the fea-

tures and the modeling algorithms need to be refined.

Therefore, repeated trials may be needed before a good

anomaly detection model is produced.

In the discussion thus far, we have used only the

minimal routing table information in the anomaly de-

tection model to illustrate our approach, which can be

applied to all routing protocols. For a specific protocol,

we can use additional routing table information and in-

clude new features in the detection model to improve

the performance. For example, for DSR ad-hoc rout-

ing protocol [13,19], we can add source route informa-

tion (the complete, ordered sequence of network hops

leading to the destination). We can also add predic-

tive features according to the “temporal and statistical”

patterns among the routing table updates, following the

similar feature construction process we used to build in-

trusion detection models for wired networks [17]. For

example, for a wired TCP/IP network, a “SYN-flood”

DoS attack has a pattern which indicates that a lot of

half-open connections are attempted against a service

in a short time span. Accordingly, a feature, “for the

past 2 seconds, the percentage of connections to the

same service that are half-open” was constructed and

had been proved to be highly predictive. Similarly, in a

mobile network, if an intrusion results in a large num-

ber of routing table updates, we can add a feature that

measures the frequency (how often) the updates take

place.

Our objective in this study is to lead to a better un-

derstanding of the important and challenging issues in

intrusion detection for ad-hoc routing protocols. First,

using a given set of training, testing, and evaluation sce-

narios, and modeling algorithms (e.g., with RIPPER as

the classification algorithm for protocol trace data and

“nearest neighbor” as the clustering algorithm for de-

viation scores), we can identify which routing protocol,

with potentially all its routing table information used,

can result in better performing detection models. This

will help answer the question “what information should

be included in the routing table to make intrusion detec-

tion effective.” This finding can be used to design more

robust routing protocols. Next, using a given routing

protocol, we can explore the feature space and algo-

rithm space to find the best performing model. This

will give insight to the general practices of building in-

trusion detection for mobile networks.

4.3. Detecting Abnormal Activities in Other Layers

Anomaly detection for other layers of the wireless

networks, e.g., the MAC protocols, the applications and

services, etc., follows a similar approach. For example,

the trace data for MAC protocols can contain the fol-

lowing features: for the past s seconds, the total number

of channel requests, the total number of nodes making

the requests, the largest, the mean, and the smallest of

all the requests, etc. The class can be the range (in the

number) of the current requests by a node. A classi-

fier on this trace data describes the normal context (i.e.

history) of a request. An anomaly detection model can
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then be computed, as a classifier or clusters, from the

deviation data.

Similarly, at the mobile application layer, the trace

data can use the service as the class (i.e., one class for

each service), and can contain the following features: for

the past s seconds, the total number of requests to the

same service, the number of different services requested,

the average duration of the service, the number of nodes

that requested (any) service, the total number of service

errors, etc. A classifier on the trace data then describes

for each service the normal behaviors of its requests.

Many attacks generate different statistical patterns

than normal requests. Since the features described

above are designed to capture the statistical behavior of

the requests, the attacks, when examined using the fea-

ture values, will have large deviations than the normal

requests. For example, compared with normal requests

to MAC or an application-level service, DoS attacks via

resource exhaustion normally involve a huge number of

requests in a very short period of time; a DDoS has

the additional tweak that it comes from many different

nodes.

5. Experimental Results

To study the feasibility of our security architecture,

we have implemented anomaly detection in a network

simulator and conducted a series of experiments to eval-

uate its effectiveness. We choose three specific ad-hoc

wireless protocols as the subjects of our study. They are

Dynamic Source Routing (DSR) protocol [12,13,3], Ad-

hoc On-Demand Distance Vector Routing (AODV) pro-

tocol [22], and Destination-Sequenced Distance-Vector

Routing (DSDV) protocol [21], They are selected as

they represent different types of ad-hoc wireless rout-

ing protocols, proactive and on-demand. We now show

how our anomaly detection methods can be applied to

these protocols and demonstrate the effectiveness of our

models can be used on other different scenarios.

We used the wireless networks simulation software,

from Network Simulator ns-21 [6]. It includes simula-

tion for wireless ad-hoc network infrastructure, popular

wireless ad-hoc routing protocols (DSR, DSDV, AODV

and others), and mobility scenario and traffic pattern

generation.

1 release 2.1b7a, December 2000

5.1. Features Selection

The decision to pick features rely on several factors.

It should reflect information from several sources, i.e,

from traffic pattern, from routing change, and from

topological movement. In order to compare among dif-

ferent protocols, we use a similar feature set for all.

Generally we consider same sets for traffic and topo-

logical information, but allow slight deviation to make

maximum utilization of routing information. Even un-

der the same measure, different protocols interpret it

in a slight different manner. For instance, PCH is the

percentage of change in number of total intermediate

hops from all source routes cached in DSR, but the per-

centage of change of sum of metrics to all reachable

destinations in DSDV and AODV.

We used the following features in Table 3 to build

models on ad-hoc routing protocols. Notice features

are collected from three sources, route cache, traffic

pattern, and movement information of the host. All

features are locally collected.

To simplify the modeling task, all quantities are dis-

cretized. All features other than velocity and distance

are separated into six levels, from 0%-20%,20%-40%,...,

80%-100%, and higher. Velocity and distance features

are discretized into 10 levels.

5.2. Models

We then build models using two classification algo-

rithms, the traditional induction based classifier RIP-

PER and a new SVM classifier SVM Light.

First, models are trained off-line using training data

from one of our simulations with pure normal data with

running time of 100,000 seconds.

5.3. Data

To test our models, we used five different test scripts

to generate traces. normal is a normal trace, 100k-rt

and 10k-rt are traces with intrusions on routing logic

and with running time as 100,000 and 10,000 seconds

respectively. 100k-tf and 10k-tf are traces with distor-

tion on traffic patterns. 10k-rt and 10k-tf contain at

most 10 intrusion sessions, while 100k-rt and 100k-tf

contain at most 100 intrusion sessions. All results are

filtered through post-processing procedure. For each re-

sult, we run ten times and report its average and error

under 95% confidence level.
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Table 3

Local Features on Ad-Hoc Protocols

Features Explanation Features Explanation

PSTC % of Significant Traffic Change

VELOCITY Velocity DISTANCE Distance from last log

RDC Relative Distance Change

PCR % of Change in Route entries PCH % of Change in number of Hops

DSDV Specific

PCB % of Change of Bad (unreachable) destinations PCU % of Change of Updated destinations

PCS % of Change of Stale destinations

DSR S/pecific

PCB % of Change of Bad routes PCU % of Change of Updated routes

PCS % of Change of Stale routes

AODV Specific

PCB % of Change of Bad routes PCU % of Change of Updated routes

PCS % of Change of Stale routes

Table 4

Detection performance on DSR with five test scripts

RIPPER SVM Light

Trace Detection Rate False Alarm Rate Detection Rate False Alarm Rate

normal N/A 1.39 ± 0.98% N/A 0.0710 ± 0.053%

100k-rt 90.7 ± 3.24% 15.3 ± 4.08% 99.1 ± 0.16% 0.0667 ± 0.002%

100k-tf 85.2 ± 2.38% 13.7 ± 4.30% 99.1 ± 0.09% 0.0556 ± 0.022%

10k-rt 90.9 ± 3.07% 9.56 ± 4.27% 99.1 ± 0.37% 0.0360 ± 0.042%

10k-tf 89.8 ± 4.23% 10.12 ± 5.53% 99.0 ± 0.33% 0.0533 ± 0.065%

Table 5

Detection performance on DSDV with five test scripts

RIPPER SVM Light

Trace Detection Rate False Alarm Rate Detection Rate False Alarm Rate

normal N/A 5.37 ± 3.10% N/A 6.01 ± 1.41%

100k-rt 88.34 ± 5.03% 23.8 ± 7.41% 86.0 ± 0.96% 26.3 ± 5.49%

100k-tf 90.61 ± 2.99% 24.1 ± 6.70% 85.6 ± 0.83% 25.5 ± 2.05%

10k-rt 87.93 ± 4.31% 15.8 ± 4.32% 85.3 ± 4.82% 20.5 ± 10.0%

10k-tf 85.23 ± 3.28% 14.5 ± 4.87% 84.4 ± 0.60% 23.4 ± 5.78%

The results in Table 4, 5 and 6 are the detection rates

and false alarms rates in terms of individual records (not

intrusion sessions). It is interesting to observe that DSR

with its results by SVM outperforms the other two a lot,
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Table 6

Detection performance on AODV with five test scripts

RIPPER SVM Light

Trace Detection Rate False Alarm Rate Detection Rate False Alarm Rate

normal N/A 1.45 ± 0.72% N/A 2.36 ± 1.07%

100k-rt 91.71 ± 3.23% 20.2 ± 6.27% 95.3 ± 0.79% 1.27 ± 0.38%

100k-tf 88.48 ± 4.14% 17.8 ± 5.10% 93.9 ± 0.72% 2.06 ± 0.63%

10k-rt 92.36 ± 3.79% 14.4 ± 4.87% 94.7 ± 0.51% 3.28 ± 0.93%

10k-tf 89.91 ± 5.31% 15.7 ± 3.39% 97.1 ± 0.32% 3.57 ± 0.79%

while the DSDV is the worst. Why do the performances

over different protocols vary so much? We will discuss

this issue in Section 5.4.

As a matter of fact, RIPPER performs very poorly,

which is not the case when it is applied in similar tasks

in wired networks. As we know, RIPPER is a rule

based classifier, where rules are composed by expres-

sions in first-order feature space. This can be an strong

indication that quasi-linear anomaly detection analy-

sis used in traditional intrusion detection systems can

not be used in ad hoc networks, where high mobility

defeats such effort. Our experiments show that SVM

has better performance, we will conduct more study to

gain insights on how SVM is able to catch the dynamic

characteristics.

We then used DSR/SVM for further experiments

where we tested our model with tests larger than the

training set, from 200,000 seconds to 1,000,000 seconds.

The results are shown in Table 7. Detection and false

alarm rates on individual records and intrusion sessions

(after post-processing) are listed.

The results show that though the model has been

trained with a much smaller trace, it has already con-

verged satisfyingly, so that it is effective even for a much

longer trace. Almost all intrusion sessions are detected,

the false alarm rate is also very low, the average of them

is about 0.125%.

5.4. Discussion

The experiment results demonstrate that an anomaly

detection approach can work well on different wireless

ad-hoc networks. That is, the normal behavior of a

routing protocol can be established and used to detect

anomalies.

First, it is important to point out that we use a post-

processing scheme to remove some spurious error dur-

ing normal use period. Errors are unavoidable in nor-

mal traces but we assume that they should not happen

frequently. In contrast, “multiple” disorders are usu-

ally recorded during deliberate intrusion. By choosing

a good window size, we can avoid high false positive rate

and still have high detection rate. The issue of spuri-

ous error can lead to a debate in the intrusion detection

research community on how to detect an intrusion that

relies on single “maneuver”. For example, using net-

work connection data, anomaly detection can be very

effective against multi-connection-based port scan and

DDoS attacks, but not so for a single-connection-based

buffer-overflow attack. However, using system call trace

generated by a running program, anomaly detection

models can be very effective against buffer-overflow at-

tacks [7,16]. This shows that there are some natural

limits on detection capabilities, depending on at which

layer the data is collected. Thus, for the routing pro-

tocols layer, we also believe that with the cooperation

of IDS on other layers, the overall anomaly detection

performance can be improved.

In this experiment, we also find a few system parame-

ters that may change the normal behavior heavily. One

of them is the mobility level – if the model is classified

using values from another mobility level, the alarm rate

can be much higher. This can be solved by random-

izing the mobility level in the experiment. However,

the current ns-2 code does not yet support this feature.

It nevertheless teaches us an important lesson that a

good anomaly detection model should collect all possi-

ble value combinations and normal scenarios. We plan

to develop schemes to cluster and classify the normal

scenarios so that we can build specific anomaly detec-

tion models for each type of normal scenarios.
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Table 7

DSR: Accuracy on Traces with Different Running Times

Running Sequence Sequence Intrusion Session Intrusion Session

Time Detection Rate False Alarm Rate Detection Rate False Alarm Rate

200000 99.1 ± 0.11% 0.0830 ± 0.052% 100.0 ± 0% 0.187 ± 0.52%

300000 99.1 ± 0.12% 0.0684 ± 0.024% 100.0 ± 0% 0.000 ± 0.00%

400000 99.1 ± 0.08% 0.0703 ± 0.028% 100.0 ± 0% 0.168 ± 0.30%

500000 99.2 ± 0.11% 0.0663 ± 0.026% 100.0 ± 0% 0.124 ± 0.22%

600000 99.1 ± 0.09% 0.0785 ± 0.018% 100.0 ± 0% 0.338 ± 0.34%

700000 99.1 ± 0.12% 0.0819 ± 0.027% 100.0 ± 0% 0.000 ± 0.00%

800000 99.1 ± 0.13% 0.0747 ± 0.026% 100.0 ± 0% 0.126 ± 0.24%

900000 99.1 ± 0.06% 0.0640 ± 0.018% 100.0 ± 0% 0.115 ± 0.22%

1000000 99.0 ± 0.15% 0.0755 ± 0.021% 100.0 ± 0% 0.070 ± 0.19%

Having done the experiments on three ad-hoc rout-

ing protocols, we now attempt to answer this question

– which type of protocol is “better” for anomaly de-

tection. Our solution tends to prefer DSR and AODV,

even in the first look its route update is not as “regu-

lar” as DSDV. After detail analysis of these protocols,

we believe that anomaly detection works better on a

routing protocol in which a degree of redundancy exists

within its infrastructure. DSR embeds a whole source

route in each packet dispatched, hence making it harder

to hide the intrusion by faking a few routing informa-

tion. We call this a path redundancy. Further, the

DSR and AODV route update depends on traffic de-

mand, which makes it possible to establish relationships

between routing activities and traffic pattern. We call

this a pattern redundancy. DSDV, in contrast, has a

very weak correlation between control traffic and data

traffic, even when we preserve the traffic feature. Note

that DSR and AODV are both on-demand protocols.

We therefore believe that those types of redundancy

have helped on-demand protocols to have a better per-

formance.

The next question, naturally, is about what informa-

tion we need in a general routing protocol, and whether

we can add criteria into security consideration on new

protocol design. We believe that a high correlation

among changes of three types of information is pre-

ferred: traffic flow, routing activities and topo-

logical patterns. The topological pattern, which is

noticeably dynamic in the ad-hoc environment, should

be more valuable if it is used by a protocol when mak-

ing route decisions. For example, new routing protocols

such as Location-Aided Routing protocol [14] that at-

tempt to utilize topological information may be more

advantageous. However, we have not found their im-

plementation on ns-2, thus we cannot conduct an ex-

periment at present time. We can conjecture that it

should improve the accuracy of our current model.

6. Related Work

There have been a lot of studies on security preven-

tion measures for infrastructure-based wireless networks

(such as [2,23]), but there is little work on the aspect of

intrusion detection. We have argued in this paper that

intrusion detection is extremely important for mobile

computing environment.

On the prevention side, general approaches such as

key generation and management have been used in a

distributed manner to insure the authenticity and in-

tegrity of routing information. Zhou and Haas [27]

introduced a routing protocol independent distributed

key management service. This approach uses redun-

dancies in the network topology to provide reliable key

management. The key idea is to use key sharing with

a maximum threshold ratio of compromised nodes to

total nodes. Binkley [1] reported experiments on au-

thentication of MAC and IP layers. Jacobs and Cor-

son [10] proposed an authentication architecture where

the emphasis is to build a hierarchy of trust in order to

authenticate IMEP messages. The difficulties in realiz-

ing all these proactive schemes are: first, cryptography
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is relatively expensive on mobile hosts, where compu-

tational capability is comparatively restricted; second,

since there is no central authority that can be depended

upon, authentication is more difficult to implement;

third, these schemes are only useful to prevent intruders

from outside (external attacks) and are not useful when

an internal node is compromised (internal attack).

On the detection and response side, Smith et al. [25]

suggested methods to secure distance-vector routing

protocols. Extra information of a predecessor in a path

to a destination is added into each entry of the rout-

ing table. Using this piece of new information, a path-

reversal technique (by following the predecessor link)

can be used to verify the correctness of a path. Such

mechanisms usually come with a high cost and are

avoided in wired network because routers are usually

well protected. However in a mobile ad-hoc network,

because each node acts as a router and is not as secure,

this kind of information that helps intrusion detection

is very valuable.

7. Conclusion

We have argued that any secure network will have

vulnerability that an adversary could exploit. This is es-

pecially true for mobile wireless networks. Intrusion de-

tection can compliment intrusion prevention techniques

(such as encryption, authentication, secure MAC, se-

cure routing, etc.) to secure the mobile computing envi-

ronment. However, new techniques must be developed

to make intrusion detection work better for wireless net-

works.

Through our continuing investigation, we have shown

that an architecture for better intrusion detection in

mobile computing environment should be distributed

and cooperative. Anomaly detection is a critical com-

ponent of the overall intrusion detection and response

mechanism. Trace analysis and anomaly detection

should be done locally in each node and possibly

through cooperation with all nodes in the network. Fur-

ther, intrusion detection should take place in all net-

working layers in an integrated cross-layer manner.

We focused our research on ad-hoc routing proto-

cols because they are the foundation of a mobile ad-hoc

network. We proposed to use anomaly detection models

constructed using information available from the rout-

ing protocols for intrusion detection purposes. We ap-

plied RIPPER and SVM Light to compute classifiers as

anomaly detectors. We have implemented this model

and have conducted simulations to evaluate its perfor-

mance. Finally, we showed that these detectors in gen-

eral have good detection performance.

There are some interesting findings. In particular,

we noted some disparity in security performance among

different types of routing protocols. We claimed that

protocols with strong correlation among changes of dif-

ferent types of information, i.e, location, traffic, and

routing message, tend to have better detection perfor-

mance. More specifically, on-demand protocols usually

work better than table-driven protocols because the be-

havior of on-demand protocols reflects the correlation

between traffic pattern and routing message flows.
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