
Understanding Malvertising Through
Ad-Injecting Browser Extensions

Xinyu Xing
Georgia Institute of

Technology
xxing8@gatech.edu

Wei Meng
Georgia Institute of

Technology
wei@gatech.edu

Byoungyoung Lee
Georgia Institute of

Technology
blee@gatech.edu

Udi Weinsberg
Facebook Inc.
udi@fb.com

Anmol Sheth
A9.com/Amazon

anmolsheth@gmail.com
Roberto Perdisci
University of Georgia

perdisci@cs.uga.edu

Wenke Lee
Georgia Institute of

Technology
wenke@cc.gatech.edu

ABSTRACT
Malvertising is a malicious activity that leverages advertising to
distribute various forms of malware. Because advertising is the
key revenue generator for numerous Internet companies, large ad
networks, such as Google, Yahoo and Microsoft, invest a lot of
effort to mitigate malicious ads from their ad networks. This drives
adversaries to look for alternative methods to deploy malvertising.

In this paper, we show that browser extensions that use ads as
their monetization strategy often facilitate the deployment of malver-
tising. Moreover, while some extensions simply serve ads from ad
networks that support malvertising, other extensions maliciously
alter the content of visited webpages to force users into installing
malware. To measure the extent of these behaviors we developed
Expector, a system that automatically inspects and identifies browser
extensions that inject ads, and then classifies these ads as malicious
or benign based on their landing pages. Using Expector, we auto-
matically inspected over 18,000 Chrome browser extensions. We
found 292 extensions that inject ads, and detected 56 extensions
that participate in malvertising using 16 different ad networks and
with a total user base of 602,417.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Web-based services; K.6.2
[Installation Management]: Performance and usage measurement;
K.6.5 [Security and Protection (D.4.6, K.4.2)]: Invasive software
(e.g., viruses, worms, Trojan horses)

General Terms
Security, Design, Experimentation

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3469-3/15/05.
http://dx.doi.org/10.1145/2736277.2741630.

Keywords
Malvertising; Browser Extension; Adware

1. INTRODUCTION
Online advertising is a powerful way to deliver brand messages

to potential customers. To monetize their online services and appli-
cations, most modern websites act as ad publishers and reserve ad
space on their web pages where online ads are displayed to their
visitors. Ad networks work as brokers between advertisers and
publishers. Joining an ad network frees websites from having to
set up their own ad servers and invest in tracking software. Conse-
quently, some ad networks attract a very large number of publishers
and produce huge revenues.

As online advertising became increasingly popular and perva-
sive, miscreants have started to abuse this convenient channel to
conduct malicious activities. Malvertising is one of such activities,
where an attacker maliciously uses advertising to distribute various
forms of malware. Malvertising can result in serious consequences,
because an attacker can purchase ad space to publish malicious ads
on many popular websites. Therefore, the maliciously crafted con-
tent could reach a very large audience. In addition, users may be
unaware of the fact that they could encounter malicious content
while browsing highly reputable websites, which may put them at
an even higher risk.

Recent reports indicate that some ad networks have started to of-
fer browser extension developers an opportunity to monetize their
“free” work [3, 9]. In other words, some ad networks are extend-
ing their business by connecting advertisers to browser extension
developers. Given this new business trend and little studies on
malvertising in this new context, we conduct a comprehensive study
on malvertising activities of ad-injecting extensions, which insert
ads on webpages without user consents. In particular, we aim to an-
swer a number of fundamental questions: How many ad-injecting
extensions are present on popular repositories like the Chrome Ex-
tension store? How many extensions are conducting malvertis-
ing activities? What are the characteristics of malvertising via ad-
injecting extensions?

To answer the aforementioned questions, we developed Expector
(Extension Inspector), a tool that is able to automatically iden-
tify ad-injecting extensions. We ran Expector on extensions

served by the Chrome Extension store, and observed several in-
teresting behaviors. First, compared to ads “naturally” published
(without any browser extension intercession) by popular websites,
ad-injecting extensions tend to serve a larger fraction of malicious
ads. We attribute this to the observation that popular websites part-
ner with large reputable ad networks, whereas extensions utilize
smaller ad networks that devote insufficient efforts to identifying
and mitigating malicious advertisers. Second, in contrast to previ-
ous studies that found only a low fraction of malicious ads, we ob-
served that some ad networks serve only malicious ads. This is pre-
sumably because these ad networks and miscreants collude to con-
duct malvertising, or because miscreants effectively own these ad
networks and use them for serving malicious ads. Finally, we found
that ad-injecting extensions can make malvertising more detrimen-
tal, because some ad networks are unscrupulous on abusing the
privileges that ad-injecting extensions offer.

In summary, the main contributions of this paper are as follows:

• We present a comprehensive study that exposes and quanti-
fies the extent to which browser extensions facilitate malver-
tising. Furthermore, we show that the high privileges granted
to extensions are often abused to increase the likelihood of
infecting users with malware, e.g., through click hijacking.

• We present Expector, a measurement framework that au-
tomatically identifies browser extensions that inject ads on
webpages. Our evaluation shows that Expector has both
low false positives (3.6%) and low false negatives (3%).

• We ran Expector on all extensions available on the Chrome
extension store (almost 18,000), and identified 292 exten-
sions that embed ad-injection capabilities. Of these, 56 de-
liver ads that lead users to sites that host malware, and have
an overall user base of 602,417. Furthermore, we found 16
unique ad-network domains that inject malicious ads, leading
users to 117 distinct malware-serving domains.

• We show that a user installing an ad-injecting extension is
more likely to be exposed to malvertising threat, compared
to users that do not install such browser extensions.

The rest of this paper is structured as follows. We begin with the
discussion of related work in Section 2. In Section 3 we provide es-
sential background. We detail the design of Expector and show
the results from applying it to the Google Chrome extension store
in Section 4. We then perform a detailed study for malvertising ex-
tensions identified by Expector in Section 5 and 6. Finally, we
conclude the paper in Section 7.

2. RELATED WORK
In this section, we discuss three lines of work most related to

ours – (1) malvertising, (2) misbehaving browser extension, and
(3) adware.

Malvertising. Malvertising has been a growing concern for many
ad networks. Prior research on this threat has shown the ram-
pancy of malvertising through normal Web browsing [21, 26, 28,
30]. Provos et al. [28] studied various channels for distributing
drive-by downloads. The authors found that 2% of the landing
sites deliver malware via advertisements, which were often reached
through multiple ad syndication. Ford et al. [21] studied malware
distribution through Flash ads and developed a tool for malicious
Flash ad detection. According to recent studies [26,30], researchers
found that about 1% ads lead users to malicious content. In addi-
tion, Zarras et al.observed that smaller ad networks are more prone

to serving malicious advertisements, and ad arbitration (syndica-
tion) process can facilitate the distribution of malicious advertise-
ments. Different from these previous studies, we focus on unrav-
eling those characteristics of malvertising unique to ad-injecting
browser extensions.

Browser Extension. Though not considered malicious, ad-injecting
activities of browser extensions are misbehaving practice. A series
of issues in misbehaving browser extensions have been studied for
years, mostly focusing on preventing user data leakage through ma-
licious extensions [20,24,25,27,29] and protecting against privilege
abuse of extensions [22]. The security model of Chrome extensions
was criticized in [27]. The authors showed that extensions intro-
duce attacks on the Chrome browser itself, and proposed a enforc-
ing micro-privileges at the DOM element level. Egele et al. [20,24]
proposed several detection solutions to spyware that silently steals
user information. By leveraging both static and dynamic analysis
techniques the authors show that it is possible to track the flow of
sensitive information as it is processed by the web browser and any
extension installed. [22] showed that many Chrome extensions are
over-privileged, which can potentially cause security risks. To ad-
dress the shortcomings of existing extension mechanisms, the au-
thors propose a comprehensive new model for extension security.
Our work differs from these studies because we focus on a little
studied yet important issue in misbehaving browser extensions –
ad injection.

A pioneering work in this problem space is Hulk [23], a dy-
namic analysis system that automatically detects Chrome browser
extensions with malicious behaviors. Using Hulk, Kapravelos et
al.found thousands of suspicious extensions including those with
ad-injecting practice. Despite effectiveness on identifying misbe-
having browser extensions, Hulk cannot provide us only with a cor-
pus of ad-injecting extensions for studying their malvertising activ-
ities because it is designed for identifying various misbehaviors in
Chrome extensions. In addition, our study needs not only a tool
to identify ad-injecting extensions but also an automatic solution
to categorize ads placed by these extensions. Considering the lim-
itation of Hulk as well as our unique requirement, we built a cus-
tomized measurement tool – Expector– to facilitate our study.

In addition to Hulk, other tools have been recently developed to
assist users in identifying ad-injecting Chrome extensions [6, 7].
These tools operate by comparing extensions installed by a user
against a list, oftentimes crowd-sourced, of known adware, and
alerting the user if such extensions are found. Such an approach
is limited by the accuracy and completeness of its list, and cannot
handle new adware that was not yet reported. Therefore, our study
does not rely on manually curated lists.

Adware. As an ad-injecting browser extension is one instance of
adware, analysing malvertising activities of ad-injecting extensions
also falls under the category of the study on adware. Edelman et
al. [18] provide an overview of the adware ecosystem, studying
the ad networks, exchanges, and practices used by ad injectors. In
a more recent work [19], the same authors study fraud in online
affiliate marketing, and how adware takes part of such frauds. Both
works focus more on the business aspects of the ecosystem, and
unlike our work, they do not attempt to conduct a comprehensive
analysis of adware, but instead extract the participants of manually
selected adware extensions.

3. AD-INJECTING EXTENSIONS
Browser extensions are programs that enhance the functionali-

ties of the browser. These programs are written using a combina-
tion of HTML, JavaScript, and CSS, and are typically hosted in
online stores, such as the Chrome web store [10] and Mozilla Ad-

Figure 1: A Google search injected with ads from “Translate Se-
lection” Chrome extension.

Ons store [8]. Extensions interact with the current webpage loaded
in the browser by injecting JavaScript to read or modify the DOM
structure of the webpage, communicating with external servers us-
ing XMLHttpRequest, and leveraging the browser APIs and fea-
tures. The permissions requested by the extension are listed in a
manifest file that is reviewed by the user at installation time. As is
evident from this description, browser extensions hold significant
privileges, thus leaving the door open to malpractices and security
and privacy risks. In the rest of the section we describe three pri-
mary types of ad injection malpractices that we observed through
our study of Chrome browser extensions. Then, we briefly intro-
duce JavaScript libraries used by ad-injecting extensions.

3.1 Ad Injection Practices
Ad Injection on Search Result Pages. Consider the screenshot in
Figure 1, showing the result page of a Google search for the query
“bags”. The user has installed the “Translate Selection” Chrome
extension whose primary purpose is to help users quickly translate
the selected text between different languages. However, this ex-
tension bundles with it the functionality to inject ads in the search
results returned to the user. The top highlighted region in Figure 1
shows the standard Google sponsored ads. The bottom highlighted
region shows another set of ads of bags with links to online stores.

Ad Injection on Retail Websites. Another type of ad injection
practice is related to injecting ads on webpages related to online
retail (amazon.com, ebay.com, etc.). When a potential shopper
browses a product on an online retail website, the extension sends
the context of a browsing session to a third-party advertisement
service, which retrieves similar or related products. These products
are shown in the form of an ad to the user, overlayed on the existing
website content.

Ad Injection on Unrelated Websites. The third type of ad injec-
tion practice consists of extensions that aggressively insert ads on
almost every webpage that the user browses. This practice can of-
ten degrade the user’s experience by shown pop-ups or other forms
of annoying ads.

3.2 JavaScript Libraries for Ad Injection
It is relatively straightforward for extension developers to mon-

etize their extensions through ad injection. Similar to existing ad

networks and ad exchanges, there exists a thriving market of ad
networks that provide JavaScript ad injection libraries for exten-
sion developers to integrate with their applications. These libraries
inject ads on webpages by modifying the DOM structure of the
HTML and inserting additional HTML iframe’s that contain the
injected ad content. The ad provider may trigger the ad injection
only on specific websites (e.g., retail websites), and/or inject ads
when a user performs a specific operations (e.g., mouse hover on a
product image).

4. EXPECTOR
In this section, we provide details for the design and implemen-

tation of Expector, our browser extension analysis and measure-
ment framework that aims to automatically detect and characterize
ad-injection practices used by browser extensions. We then discuss
how we use Expector to detect ad-injecting extensions (with ei-
ther “regular” ads or malvertising) in the Chrome Extension store.

4.1 Design
Identifying Triggering Websites. Some ad-injecting extensions
inject ads only when the user visits a specific set of websites. There-
fore, Expector needs to identify the websites that may trigger
the ad injection functionalities of each extension to be analyzed.
To identify such websites, Expector performs static analysis of
the extension’s code. As some of the ad injection code may be
loaded from third-party library at runtime, Expector also spawns
a browser with the extension installed to intercept all the scripts
transmitted via the network. More specifically, Expector in-
stalls a virtual proxy between the browser’s JavaScript engine and
the extension. Using the remote debugging protocols supported
by browsers (e.g., Chrome [12]), the virtual proxy intercepts all
the function invocations related to JavaScript executions. Once the
JavaScript code executed by the extension is obtained, it searches
for references to one of the ten most popular top-level domains
(TLDs) [17] (e.g., .com, .net, .org). We limit the search to
these top-ten TLDs because we assume that extensions will most
likely target popular websites, almost all of which are registered
under the top-ten TLDs.

Triggering Events for Ad Injection. Besides injecting ads based
on websites the user visits, extensions also inject ads on specific
user generated events. For example, the extension code may reg-
ister an event listener on a product image of a retail site and listen
to the “MouseOver” event. The callback for injecting ads of sim-
ilar products is only executed when the user hovers his mouse on
this image. In order to effectively identify ad injection extension,
Expector tries to trigger as many as possible potential events that
the extension might be interested in. To this end, for all DOM el-
ements that have a JavaScript event handler to process user events,
like onClick, onMouseOver, etc., we instruct the browser to execute
the corresponding JavaScript function.

A caveat to the above described event trigger mechanism is that
some extensions inject ads only after some time has elapsed since
the user installed the extension. We assume these practices are used
to reduce user dissatisfaction from the injected ads and to reduce
the chance to be detected by an extension reviewer. We therefore
“tricked” these extensions by setting the system clock before we
install an extension to a random long enough time backwards, then
install the extension, launch the browser and then set the system
clock back.

Identifying Extension-Injected Elements. As a first step for de-
tecting injected ads, the measurement framework should identify
the suspicious DOM elements that are potentially inserted by the

extension for ad injection. A naive approach is to directly compare
the HTML source of two different pages – one with the extension
loaded, and another one without. However this approach will result
in a large number of false positives as most webpages load a large
amount of dynamic content that can be served by different hosts on
each reload of the webpage. For example, each reload of a webpage
can potentially result in ads served from different ad providers.

To address this, Expector uses both the DOM structure as well
as the content of the DOM elements to identify potential extension-
injected elements. This is achieved by the following steps:

1. We assume that all hosts that serve content on the webpage
without the extension installed are trusted and generate a
list of trusted host names by loading the webpage multiple
times without the extension. The reason we trust such exist-
ing hosts is that extensions use different ad networks than
mainstream websites, mostly due to restrictions enforced
by the large ad networks [2].

2. We load the webpage using two instances of the browser
(with and without the extension loaded) and record the DOM
tree.

3. We trigger user events in the instance with extension in-
stalled as described above.

4. The DOM tree structure is flattened into a list of elements
by performing a pre-order traversal over the correspond-
ing DOM tree, i.e., for each node in the list, its descen-
dants are located at its right side and its ancestors are at the
left side of the node. Each item in the list consists of the
tag name of the DOM element and the domain associated
with the DOM element (if such domain exists). For exam-
ple, an iframe tag like <iframe src=‘http://www.
amazon.com/product/B00BWYQ9YE/’/> is encoded
as a two tuple (‘iframe’, ‘www.amazon.com’) after
transformation.

5. In order to compute the difference between the two lists, we
used a variant of the longest common subsequence (LCS)
algorithm. The modified LCS algorithm outputs nodes that
are present only in the webpage loaded with the extension
installed.

6. Finally, these elements are further processed and only the
elements whose host name is not presented in the trusted
list are labeled as potential injected ad elements. Although
extensions might use domains in the trusted list to serve
ads, we find in practice it is rare as popular and reputable
ad networks (e.g. Google AdSense) disallow their usage in
extensions [2].

The above process enables us to identify DOM elements that are
only added by the extension. As DOM tree manipulation might be
a legitimate functionality for some extensions, Expector needs
to apply further checks to identify DOM elements that are ads.

Identifying Extension-Injected Ads. A unique characteristic of
online ads is that users who click the ad are usually redirected to
multiple other sites before eventually reaching the landing page.
These redirections enable ad networks to monitor ad clicking for
analytics and billing purposes. This redirection pattern is unique to
ads and simply detecting it is sufficient to identify that the corre-
sponding DOM element is advertisement. We use these observa-
tions for distinguishing ad elements from other non-ad elements.

To this end, Expector visits the ad landing pages potentially
associated with the identified DOM elements through redirects. For
all elements that have a URL associated with them, we instruct the

browser to visit the URL. Note that we ignore iframe’s, since the
URL points to the source of the iframe. For the remaining elements
(iframe’s or elements with no URLs), we instruct the browser to
trigger a click event to emulate a user clicking inside the element.
For all the above cases, if the element contains an ad, the adver-
tiser’s website will be loaded usually through a series of redirects,
first to one or more ad networks, and then to the ad landing page.

To detect such redirection patterns, we implemented a lightweight
Chrome extension, which is loaded before the other extension is
installed, that logs all HTTP requests made by the browser. HTTP
requests issued as a result of the above process are analyzed for
searching redirections. A redirection is detected when a visit (click)
results in more than one domain in the traffic trace, and the last do-
main (e.g., the ad landing page) is not the same as the original web
site. If such redirection is identified, the extension is labeled for
further inspection.

4.2 Implementation
We implement Expector using Node.js [11] and Selenium [14].

We use Node.js to spawn a Chrome instance and load a Chrome
extension for pre-parsing (identifying triggering websites). Us-
ing the remote debugging protocol of Chrome, we configure a vir-
tual proxy working as a Chrome Developer Tool that intercepts
all the JavaScript function invocations. Specifically, we listen on
all Debugger.scriptParsed events and log all the JavaScript code
parsed by the V8 JavaScript engine. The rest of the components
of Expector are implemented with Selenium and the LCS algo-
rithm is implemented in Python.

To ensure fast and scalable processing of a large number of Chrome
extensions, we deploy Expector across 60 Linux Debian 7 vir-
tual machines running on a 32 core server with 128 GB RAM. This
setup enabled us to process all 18,030 extensions in the Chrome
webstore in less than three days.

4.3 Evaluation
In order to assure the completeness of our study on the Chrome

extensions store, we evaluate the accuracy of Expector to de-
tect ad injecting extensions by characterizing the false positive and
negative rates using two different datasets:

Measuring false positives. We evaluate the false positive rate of
Expector by testing all the available extensions on the Chrome
web store followed by manual verification. To this end, we de-
veloped a crawler that downloads all extensions that are listed on
the Chrome Web Store [10] along with the extension’s meta data,
i.e., developer account, extension category, number of active users,
rating, description, and user reviews. We ran our crawler during
March 2014, and obtained 18,030 Chrome extensions1.

Out of the 18,030 extensions downloaded from the Chrome web
store, 108 extensions (0.6%) failed to be processed by Expector.
By inspecting the code of these extensions we found that these ex-
tensions utilize native binary code [13] that was not ported by the
extension developer to Linux. All other 17,922 extensions were
successfully evaluated by Expector using the setup within three
days highlighting the ability of Expector to scale to a large num-
ber of extensions.
Expector reported 303 extensions as adware, which accounts

for 1.7% extensions on Google Chrome store. We manually in-
stalled each of these and inspected their source code, and found
that 292 of these are indeed adware, which is notably higher (9×)

1In [23], Kapravelos et al.evaluated Hulk using a larger dataset
containing 48,332 Chrome extensions presumably because they
collected their extension samples through different channels.

http://www.amazon.com/product/B00BWYQ9YE/
http://www.amazon.com/product/B00BWYQ9YE/
www.amazon.com

than the crowd-sourced approach used by Extension Defender [6].
This indicates a very low false positive rate of 3.6%. We further
analyzed the 11 extensions that Expector incorrectly identified
and find that Expector flagged them as users were re-directed
to webpages controlled by the extension developer that contained
ads. For example, parental control extensions like Anti-Porn Pro
and No Xvideos maintain a blacklist of websites. When users nav-
igate to these webpages, the extension re-directs the user to a web-
page hosted by the extension developer showing a warning message
along with a few ads. This webpage hosts ads which are detected
by Expector and consequently the corresponding extension is
flagged as adware.

Measuring false negatives. In order to study the false negative
rate of Expector we use a crowdsourced list of Chrome exten-
sions that are tagged as adware. This list is provided by Extension
Defender [1] that enables users to submit extensions as potential
adware which are reviewed and verified manually by the curators
of this list. In March 2014, this Extension Defender had 78 Chrome
extensions that were tagged as adware.

We first manually verify the crowdsourced list of extensions tagged
as adware. Surprisingly, we found that out of the 78 extensions only
34 of them were manually verified as adware. This initial analysis
highlights the limitations of the crowdsourced approach where cu-
rators cannot manually check every update to the extension source
code and verify user complaints. Consequently, we postulate that
these 44 extensions may have disabled the ad injection functional-
ity after being flagged as adware, and Extension Defender failed to
remove them from their list.

Out of the 34 manually verified adware extensions, Expector
was able to correctly detect 32 of these. We further analyzed the
two extensions that Expector missed. The first one uses a Win-
dows DLL file, which is not compatible on Linux, but could have
been processed if Expector was deployed on Windows. We do
not count this as a false negative. The second extension operates
on Facebook, and uses a more sophisticated triggering method. It
requires the user to visit Facebook.com, scroll to the bottom of the
page, and wait for 10 seconds before injecting ads. Expector
correctly identified the triggering website and the timeout event,
but failed to detect the required scroll event. These complex trig-
gering events are difficult to identify. However, as our analysis
shows, they are quite rare as they target a very specific user inter-
action, thus reducing the number of ads the extension injects (and
lowering their revenue). In summary, Expector has a low false
negative rate of 3.0% (1/33).

5. STUDYING MALVERTISING IN A CON-
TROLLED ENVIRONMENT

In this section, we expose and characterize malvertising activities
by interacting with those ad-injecting extensions that Expector
identifies.

5.1 Methodology
As described in Section 4, Expector detects 292 ad-injecting

extensions. To study their malvertising activities, we need to be
able to classify the ad as being malicious, i.e., an ad that leads the
user to a malware hosting domain. To this end we use the following
process.

Each ad-injecting extension identified by Expector, is auto-
matically installed in a browser and instrumented so that it injects
ads. Expector then browses a set of pages and activates a “click”
event on all ads (both injected by the extension and those appear-

A
cc

es
sib

ili
ty

Bl
og

gi
ng

D
ev

el
op

er
To

ol
s

Fu
n

Ph
ot

os
Pr

od
uc

tiv
ity

Se
ar

ch
To

ol
s

Sh
op

pi
ng

So
ci

al
&

Co
m

m
un

ic
at

io
n0.00

0.05
0.10
0.15
0.20
0.25
0.30
0.35

PD
F

Figure 2: The distribution of ad-injecting Chrome extensions with
malvertising practice across different categories.

Ad network (a.com)

Malware hosting site (m.com)

Landing site (b.com)

❷ Click ads & redirect

Web browser

adware

Figure 3: The malvertising flow of an ad-injecting extension, show-
ing a common pattern of three different domains – 1) ad network
domain for serving the ad, 2) a landing domain reached after the ad
is clicked, and 3) the domain hosting the malware executable.

ing on the page regardless of the extension) that appear during this
browsing session and logs the landing pages.

All of the “safe browsing” APIs that we tested (including Google
Safe Browsing API and www.bluecoat.com) failed to detect
the majority of ad landing pages in our study, probably because
the ad landing URLs are constructed dynamically. As a result, we
visit each of the ad landing pages and observe whether it hosts an
executable or contains links that enable to download an executable.
In such cases, the executable is downloaded and uploaded to an
online service (VirusTotal [16]) to check whether it is a malware.
Based on the returned results we classify the ad as either malicious
or non-malicious.

5.2 Results
We studied malvertising activities by setting the set of pages that

Expector visits to the top-1000 Alexa websites. We observed
that ad-injecting extensions operate similarly to standard websites
and use APIs provided by an ad network for injecting ads. We
group together ad-injecting extensions based on the ad networks
which they use for fetching ads.

As described above, Expector provides all the ads appearing
on each website (separated to organic ads and those injected by the
extension), and we classified the ads injected by the ad-injecting ex-
tensions based on whether an ad redirects a user to a landing page
where malware can be downloaded. As shown in Table 1, we found
that 16 out of the 67 (24%) ad network domains deliver malicious

www.bluecoat.com

Table 1: Characteristics of ad networks, i.e., domains that serve ads to the ad-injecting extensions in our study.

Ad network domain Number of Number of malware Fraction of Number of
extensions hosting domains malvertising unique ads

toparcadehits.com 1 66 1.0 119
a.kaytri.com 5 50 1.0 137
my-uq.com 8 4 1.0 12
go.webfind.pw 15 1 1.0 3
pchealthcheckup.net 15 3 1.0 3
onlinewebfind.com 14 4 1.0 11
premiumvideoupdates.com 17 2 1.0 12
feeds.webmakerplus.info 8 14 1.0 27
search.buzzdock.com 7 1 1.0 1
simplyfwd.com 5 2 1.0 3
search.privitize.com 2 4 1.0 7
www.freedailydownload.com 1 1 1.0 7
speedtestbeta.com 2 34 1.0 61
adfishmedia.go2cloud.org 1 7 0.640 46
nym1.ib.adnxs.com 17 2 0.153 54
lax1.ib.adnxs.com 2 1 0.490 14

Table 2: The top-5 most popular ad-injecting extension that delivered malicious ads. Notice that the top four hijack all mouse-click events
and constantly serve malicious ads.

Ad-injecting extension name User base Fraction of malvertising Malicious activities
HD-Total-Plus 183,470 1.0 Hijacking click events
DownloadTerms 114,851 1.0 Hijacking click events
BetterSurf 97,250 1.0 Hijacking click events
Expresso Smileys and Emoticons 3,392 1.0 Hijacking click events & adding hyperlinks
memeticons2 2,358 0.49 Simple ad injection

ads (i.e., engage in malvertising) – when clicking ads delivered by
these ad networks, users are redirected to landing pages that ma-
nipulate the users into downloading malicious executables. These
16 ad network domains are used by 56 extensions out of the 292
ad-injecting extensions that we studied (19%). Overall we found
16 unique executables, all of which are labeled as Trojan.

Figure 2 plots the distribution of the 56 malvertising extensions
across the different extension categories. Interestingly, the major-
ity of these extensions (over 35%) fall under the “Fun” category,
perhaps trying to capture many users that might be less tech-savvy
and are more likely to be manipulated into installing malware.

For these 16 ad network domains, we note that malicious ex-
ecutables are typically not hosted on the same site as the land-
ing pages of the malicious ads. A common case we observed is
depicted in Figure 3 where the ad-injecting extension fetches ads
from an ad network (a.com). When a user clicks the ad, she is
redirected to a landing page residing on a different domain – a ma-
licious ad landing domain (b.com). Finally, the malware itself is
typically hosted on a third domain (m.com). We assume that this
is because separating ad landing domains from malware hosting
domains makes it more difficult for browser companies, such as
Google (via their Safe browsing API), Firefox and Apple from la-
beling the malicious landing sites as malware site.

Table 1 lists the 16 ad network domains, i.e., the sites that deliver
ads to extensions that are used for malvertising. We observe that
they are not the popular ad networks, with the exception of nym1.
ib.adnxs.com and lax1.ib.adnxs.com that use AppNexus,
a large and very popular ad network [5]. The large ad networks
generally prohibit using their network for displaying ads on do-
mains not owned by the publisher, essentially disallowing exten-
sions to inject ads on arbitrary domains [2]. Furthermore, they ban

all forms of malvertising [4]. It is thus surprising that AppNexus
hosts malvertising. While this might be attributed to AppNexus not
being strict enough regarding their advertisers, it might be the result
of a compromised legitimate advertiser – clicking the ad redirects
to an advertiser’s page that might have been compromised by hack-
ers, and they redirected to a malicious page hosting malware [15].

Table 1 also lists the number of domains actually hosting a down-
loadable malware. As the table shows, some host the malware in
many different domains, reaching well over 30. We assume that this
is to make it more difficult for browser companies to mark these do-
mains as malicious. Finally, the table also provides the fraction of
malicious ads delivered by each domain during Expector’s vis-
its to the top-1000 Alexa websites. A key observations is that the
extension-inserted ads are mostly malicious for almost all the 16 ad
network domains – 13 out of the 16 ad network domains delivered
only malicious ads leading users to download malware. This is in
clear contrast to the organic ads embedded on webpages, where we
did not observe any malicious ad. This is presumably because the
top-1000 alexa websites entertain business with large reputable ad
networks, which have already deployed effective defense mecha-
nisms against malvertising and serve nearly no malicious ads. In
contrast, Chrome extensions employ small – maybe malicious – ad
networks, which may collude with malicious advertisers, primarily
serve malicious ads and offer extension developers higher rate than
those reputable ones.

Table 2 provides details for the top-5 most popular ad-injecting
extension we identified as participating in malvertising. The table
shows that 4 out of 5 of these extensions engage solely in malvertis-
ing, meaning they only serve malicious ads to users. Furthermore
their user base is fairly large, with hundreds of thousands of active
victim users.

nym1.ib.adnxs.com
nym1.ib.adnxs.com
lax1.ib.adnxs.com

Table 3: The HTTP request patterns originated from ad-injecting extension for each ad network. The table shows the purpose of the request
(fetch an ad or report that a user clicked on an ad), the field used to identify the affiliate (extension), and the method used by the ad network
to track the user.

Ad network Request pattern Request type Affiliate ID field

txtsrving.info
cdncache1-a.akamaihd.net/loader/...pid=... fetch ad pid
i.txtsrving.info/kwdu?...subid=... fetch ad subid
p.txtsrving.info/click?..subid=... click subid

superfish.com www.superfish.com/ws/findByUrl.action?...userid=...dlsource=... fetch ad dlsource
www.superfish.com/ws/offerURL.action?...userid=...dlsource=... click dlsource

imgclck.com www.imgclck.com/supp0rt/www/delivery/afr.php?...&beacon=... fetch ad beacon
xtensionplus.com xtensionplus.com/display.htm?...&pi=... fetch ad pi

Table 4: Relationships between malicious ad network domains and corresponding malware hosting domains.

Ad network domain Average correlation between Average correlation between Fraction of overlapping IPs per day
ad network domains & ad network domains &

identified malware domain lookups other malware domain lookup
a.kaytri.com 0.870 0.220 0.006
my-uq.com 0.810 0.121 0.009
go.webfind.pw 0.819 0.161 0.470
pchealthcheckup.net 0.840 0.122 0.153
premiumvideoupdates.com 0.925 0.063 0.098
feeds.webmakerplus.info 0.851 0.209 0.153
simplyfwd.com 0.917 0.082 0.326
search.privitize.com 0.848 0.201 0.332
www.freedailydownload.com 0.676 -0.419 0.286

5.3 Summary
During our study, none of the ads originally embedded on the

top-1000 Alexa websites were malicious, whereas we found that
roughly 4% of extension-injected ads on these websites were mali-
cious. This implies that a user installing an ad-injecting extension
is more likely to be exposed to malvertising, even though she only
visits highly popular websites.

6. MALVERTISING IN THE WILD
In this section, we continue to explore malvertising activities of

ad-injecting extensions. In particular, we are interested in the fol-
lowing questions. (1) For many ad networks shown in Table 1, why
are the served ads primarily malicious, whereas a prior study [30]
indicates the proportion of malicious ads on an ad network is up to
around 40%? (2) We demonstrated that a user could be tricked into
clicking malicious ads injected by extensions, visiting the landing
pages and eventually downloading malware; however, are there any
users actually tricked into downloading malware in the real world?
(3) If so, how likely do users click malicious ads injected by exten-
sions and eventually download malware? Using datasets obtained
from large real-world networks, we answer these questions in the
subsequent sections.

6.1 Dataset
In order to perform the study on malvertising through extensions,

we use two datasets provided to us by a large ISP network, a secu-
rity company, and two universities, all of which monitor their users’
network traffic.

HTTP Traffic. We obtained the HTTP traffic log of tens of thou-
sands of users from two university networks and tens of enterprise
network during the entire month of May 2014. For each HTTP re-
quest, we obtained a source identifier, the destination IP address,

and the complete HTTP request header including the user’s cookie
identifier (if present), requested URL path and referrer.

DNS Traffic. A large ISP provided us the DNS queries performed
to the domains we study during the 30 days in May 2014. The DNS
traffic log contains A-type DNS records from around 20 million
machines located in the US. Each DNS query contains an identifier
for the requesting host and the requested domain.

6.2 Analysis of Ad Networks
To tackle the first question described above, we restrict our study

to the ad networks shown in Table 1. Then we identify patterns in
the URLs that each ad-injecting extension generates by inspecting
the source code, and extract the affiliate IDs which are unique IDs
used for tracking ad-injecting extensions. Table 3 lists some traffic
pattern examples used by ad-injecting extensions, along with the
fields we use to identify the affiliate IDs (leading us to the corre-
sponding ad-injecting extension) contained in the HTTP requests.

We used the aforementioned HTTP dataset and observed the
HTTP traffic to each ad network. For the ad networks shown in
Table 4, we surprisingly found that, all HTTP traffic to these ad
network matches the traffic patterns that the corresponding exten-
sions generate. Furthermore, we inspected the referrer fields of the
HTTP traffic by visiting the referrer pages. We searched the corre-
sponding ad network domain names in the referer pages and found
that none of the referrers contain these ad network domains. These
observations imply that the ad network domains that appear in the
traffic logs are accessed due to displaying an ad injected by an ex-
tension rather than some other method (e.g., email links or organic
web ads). In other words, the ad networks in Table 4 only enter-
tain business with advertisers and extension developers rather than
website owners (publishers). Presumably, this is the reason why
the prior study does not identify ad networks that primarily serve
malicious ads. In addition, this serves as an evidence that some ad

0 5 10 15 20 25 30
Day

0

200

400

600
#

of
IP

s
to

si
m

pl
yf

w
d.

co
m Ad

Malware

200

400

600

#
of

IP
s

to
sr

v.
ai

le
ro

nx
.c

om

(a) simplyfwd.com

0 5 10 15 20 25 30
Day

0

20000

40000

60000

80000

100000

#
of

IP
s

to
pr

em
iu

m
vi

de
ou

pd
at

es
.c

om

Ad
Malware

0

50000

100000

150000

#
of

IP
s

to
fix

pc
no

w
.n

et

(b) premiumvideoupdates.com

0 5 10 15 20 25 30
Day

0

500

1000

1500

#
of

IP
s

to
fr

ee
da

ily
do

w
nl

oa
d.

co
m

Ad
Malware

40

60

80

100

120

140

#
of

IP
s

to
m

ob
la

o.
co

m

(c) www.freedailydownload.com

0 5 10 15 20 25 30
Day

16000

18000

20000

22000

24000

26000

#
of

IP
s

to
a.

ka
yt

ri
.c

om

Ad
Malware

150

200

250

300

#
of

IP
s

to
fa

nc
yc

ak
e.

ne
t

(d) a.kaytri.com

0 5 10 15 20 25 30
Day

600

700

800

900

1000

#
of

IP
s

to
fe

ed
s.

w
eb

m
ak

er
pl

us
.in

fo

Ad
Malware

200

220

240

260

280

#
of

IP
s

to
52

cp
s.

co
m

(e) feeds.webmakerplus.info

0 5 10 15 20 25 30
Day

200

250

300

350

#
of

IP
s

to
se

ar
ch

.p
riv

iti
ze

.c
om

Ad
Malware

150

200

250

300

#
of

IP
s

to
em

br
ar

i-
1.

cn

(f) search.privitize.com

0 5 10 15 20 25 30
Day

5000

10000

15000

20000

#
of

IP
s

to
m

y-
uq

.c
om

Ad
Malware

140

160

180

200

220

240

#
of

IP
s

to
su

pe
rb

et
fa

ir.
cn

(g) my-uq.com

0 5 10 15 20 25 30
Day

0

5000

10000

15000

#
of

IP
s

to
pc

he
al

th
ch

ec
ku

p.
ne

t

Ad
Malware

40

60

80

100

120

#
of

IP
s

to
m

io
fle

im
in

g2
.c

om

(h) pchealthcheckup.net

0 5 10 15 20 25 30
Day

50

100

150

200

#
of

IP
s

to
go

.w
eb

fin
d.

pw

Ad
Malware

0

50

100

150

200

#
of

IP
s

to
za

gg
a.

in

(i) go.webfind.pw

Figure 4: Number of unique sources resolving malicious ad network domains ("Ad") and the number of unique sources resolving one of the
corresponding malware hosting domains ("Malware"). The plots clearly show visible positive correlation between the two metrics.

networks are malicious and legit websites never have business with
them.

6.3 Correlation Between Ad-Injecting Exten-
sions and Malware

We explore the second question by considering our DNS dataset,
and looking for correlations between users resolving the ad network
domains and those resolving the domains hosting the downloadable
malware (meaning, users that actually download the malware, not
only clicked an ad and visited the landing domain). We restrict this
study to ad networks that we found to be used solely by extensions
and participate in malvertising. Table 4 lists the 9 ad networks
matching these criteria.

Ideally, we would like to show causality relationship between
downloading malware and receiving ads from the extensions. How-
ever, to this end one must obtain complete temporal HTTP flows of
many users, which we do not have. Instead, we use our DNS dataset
and show strong temporal correlation between the users that resolve
the ad network domains and the malware hosting domains.

Figure 4 shows the number of unique sources that resolve an
ad network domain and one of malware hosting domains a corre-
sponding ad redirects to. Overall, the plots show a clear correla-
tion between the two. Specifically consider the plot corresponding
to premiumvideoupdates.com, the curves exhibit a similar
temporal pattern, but moreover both curves exhibit a sharp decrease
in the number sources on the 20th day of the month. This date
is actually the date that Google took down a few popular exten-
sions that used premiumvideoupdates.com as their ad net-
work domain. While the domain fixpcnow.net still existed af-
ter the removal of the extensions, the fact that the extension became
unusable reduced its visit count to almost zero. Although we can-
not claim causality, this example does serve as a strong evidence
for causality. Moreover, the inverse causality argument cannot be
made, i.e., even if Google marked the domain fixpcnow.net
as unsafe, bringing its visitors count to zero, this will not have an
impact on the ads served by the malicious extension (and thus the
number of users resolving its ad serving domain).

premiumvideoupdates.com
premiumvideoupdates.com
fixpcnow.net
fixpcnow.net

(a) Malvertising on cnn.com. (b) Media player updates. (c) Trojan drops.

Figure 5: Extension Plus-HD 1.3 inserts a malicious ad on cnn.com, pop ups media update warning and drops a Trojan on the unwary user
machine.

In order to study the correlation beyond a few illustrative exam-
ples, we further computed the Pearson correlation values between
monthly DNS lookups of each ad network domain and all of its cor-
responding malware hosting domains. Table 4 shows the average
Pearson correlation values for each ad network domain over all its
malware hosting domains. The table shows that the average corre-
lation is very high (1 indicates perfect positive correlation and -1
indicates perfect negative correlation).

To strengthen our belief that these correlations can indicate causal-
ity, we computed the correlation of DNS resolutions for our ad net-
works with 44 other malware domains, which are identified as host-
ing malware by Google safe browsing API, and are not a part of
the malware hosting domains that we identified. Table 4 shows that
average Pearson correlation values between the ad network domain
lookups and these arbitrary malware domain lookup is significantly
lower than the correlation with the malware domains we observe
through extensions malvertising. This serves as another evidence
that the extensions are indeed correlated with the specific malware
domains reached through ads injected by the extensions and not to
any arbitrary malware hosting domains.

6.4 Malicious Ad Conversion
Finally, we seek to assess the probability that a user of a malver-

tising extension will download malware. To this end we consider
the overlapping source identifiers in our DNS dataset that resolve
both an ad network domain and a corresponding malware hosting
domain. Recall that the DHCP churn rate of the ISP is extremely
low in a daily basis and the majority of the ISP customers that pro-
vided this data are home users, it is very likely that the sources that
resolve both originate from a single user (host). Overall, the frac-
tion of overlapping source identifiers indicates the infection rate of
malware delivered by extensions that use the identified ad network.

Table 4 shows this fraction, ranging from as low as 0.6% to an
astonishing 47% (meaning, almost 1 in 2 sources that resolve the
ad network domain also resolve a malware domain). In order to
better understand the high variance in this fraction we installed the
extensions corresponding to each overlap ratio and studied their
methods for injecting malicious ads. As expected, we found that
the extensions exhibiting low overlap ratios use much more subtle
methods that resemble standard online ads, whereas those exhibit-
ing the high overlap ratios use dubious techniques, such as abusing
extension privilege to hijack all mouse click events (essentially re-
sulting in a click-through-rate of 100%). The reason that the over-
lap never reaches 100% is that we measure DNS resolution of the

download page, and users oftentimes understand that they are being
manipulated and avoid downloading the malware.

For example, Figure 5 shows the consequences of installing a
Chrome extension called Plus-HD 1.3 (now removed from the Chrome
extensions store). When the user visits a page, such as www.cnn.
com, a popup is injected at the bottom of the browser window
(not the bottom of the page!). When an unwary user that clicks
anywhere on the page (not only on the buttons), a new tab opens
up, showing as if a video is ready for watching, but indicates that
the user needs to download and install a “Media Downloader”. If
the user indeed clicks, the malware is downloaded and the user is
prompted to execute it. Table 2 provides the details of ad injection
behavior for the top popular malicious extensions.

Overall, these overlap ratios indicate that these clearly malicious
practices of extension developers actually pay off in the short run,
since users that install them cannot really avoid being directed to
the download page, and as we show, many of them actually down-
load the malware (hopefully, not all of them install it). In the long
run such behavior might not be the best course of action for the at-
tackers because they can easily be detected by many users, reported
to the extension store and get quickly disabled and removed from
the store.

7. CONCLUSIONS
In this paper, we performed the first in-depth study on malvertis-

ing in the context of ad-injecting browser extensions. We showed
that the increasing efforts of large ad networks to mitigate malver-
tising from their networks cause browser extensions to become a
new avenue for malicious malvertising activities. We found that
users of ad-injecting extensions are more likely to be exposed to
the malvertising threat even though they only visit malicious-ad
free popular websites. We also found that an ad-injecting exten-
sion can significantly facilitate malvertising and make this activity
more harmful especially when miscreants abuse the privilege that
ad-injecting extensions offer. Though we only observed roughly
20% of ad-injecting extensions that conduct malvertising, other ad-
injecting extensions can easily go beyond the grey area because
they leave the door open to malpractices. As part of future work
we plan on extending Expector beyond Chrome, so that it can
process extensions of other popular browsers. Furthermore, our
study lies on the foundations to the analysis of web apps, which are
very similar to extensions for increasingly popular browser-based
OSes, such as Chrome OS and FireFox OS.

www.cnn.com
www.cnn.com

Acknowledgments
The authors would like to thank the anonymous reviewers and the
IBM researcher, Yunhui Zheng, for their help and feedback. This
material is based in part upon work supported by the National Sci-
ence Foundation under Grants No. CNS-1017265, CNS-0831300
and CNS-1149051, by the Office of Naval Research under Grant
No. N000140911042, by the Department of Homeland Security
under contract No. N66001-12-C-0133, and by the United State
Air Force under Contract No. FA8650-10-C-7025. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the National Science Foundation, the Office of Naval Re-
search, the Department of Homeland Security, or the United States
Air Force.

8. REFERENCES
[1] Abusive extension submission.

http://extensiondefender.com/submit.php.
[2] Ad placement policies. https://support.google.

com/adsense/answer/1346295#Ads_on_the_
same_page_or_site_as_another_publisher.

[3] Adware companies are buying up popular chrome add-ons.
http://www.omgchrome.com/malware-buying-
google-chrome-extensions/.

[4] Anti-malvertising.com.
http://www.anti-malvertising.com/.

[5] Appnexus. http://www.appnexus.com/.
[6] Extension defender.

http://extensiondefender.com/.
[7] Extshield notifies you if you’re running an adware extension.

http://lifehacker.com/chrome-protector-
notifies-you-if-youre-running-an-adwa-
1505371480.

[8] Firefox add-ons. https:
//addons.mozilla.org/en-US/firefox/.

[9] Get ready, chrome users - you’re about to start seeing ads
inside of extensions.
http://thenextweb.com/google/2012/07/03/
get-ready-chrome-users-youre-about-to-
start-seeing-ads-inside-of-extensions/.

[10] Google Chrome Web Store.
https://chrome.google.com/webstore/.

[11] Node.js. http://nodejs.org/.
[12] Remote Debuggin Protocol, Google Developers.

https://developers.google.com/chrome-
developer-tools/docs/debugger-protocol.

[13] Saying goodbye to our old friend npapi.
http://blog.chromium.org/2013/09/saying-
goodbye-to-our-old-friend-npapi.html.

[14] Selenium automates browsers.
http://docs.seleniumhq.org/.

[15] Tips for publishers. http://www.anti-
malvertising.com/tips-for-publishers.

[16] Virustotal. https://www.virustotal.com/.
[17] Web Technology Surveys.

http://w3techs.com/technologies/
overview/top_level_domain/all.

[18] B. Edelman and W. Brandi. The ad networks and advertisers
that fund ad injectors.
http://www.benedelman.org/injectors/, 2013.

[19] B. Edelman and W. Brandi. Information and incentives in
online affiliate marketing. In HBS Working Paper, 2013.

[20] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song.
Dynamic spyware analysis. In 2007 USENIX Annual
Technical Conference on Proceedings of the USENIX Annual
Technical Conference, ATC’07, pages 18:1–18:14, Berkeley,
CA, USA, 2007. USENIX Association.

[21] S. Ford, M. Cova, C. Kruegel, and G. Vigna. Analyzing and
detecting malicious flash advertisements. In Proceedings of
the 2009 Annual Computer Security Applications
Conference, ACSAC ’09, pages 363–372, Washington, DC,
USA, 2009. IEEE Computer Society.

[22] A. Guha, M. Fredrikson, B. Livshits, and N. Swamy. Verified
security for browser extensions. In Proceedings of the 2011
IEEE Symposium on Security and Privacy, SP ’11, pages
115–130, Washington, DC, USA, 2011. IEEE Computer
Society.

[23] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna,
and V. Paxson. Hulk: Eliciting malicious behavior in browser
extensions. In 23rd USENIX Security Symposium (USENIX
Security 14), San Diego, CA, Aug. 2014. USENIX
Association.

[24] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. A.
Kemmerer. Behavior-based spyware detection. In
Proceedings of the 15th Conference on USENIX Security
Symposium - Volume 15, USENIX-SS’06, Berkeley, CA,
USA, 2006. USENIX Association.

[25] Z. Li, X. Wang, and J. Y. Choi. Spyshield: Preserving
privacy from spy add-ons. In Proceedings of the 10th
International Conference on Recent Advances in Intrusion
Detection, RAID’07, pages 296–316, Berlin, Heidelberg,
2007. Springer-Verlag.

[26] Z. Li, K. Zhang, Y. Xie, F. Yu, and X. Wang. Knowing your
enemy: Understanding and detecting malicious web
advertising. In Proceedings of the 2012 ACM Conference on
Computer and Communications Security, CCS ’12, pages
674–686, New York, NY, USA, 2012. ACM.

[27] L. Liu, X. Zhang, V. Inc, G. Yan, and S. Chen. Chrome
extensions: Threat analysis and countermeasures. In
Proceedings of 19th Network and Distributed System
Security Symposium, NDSS ’12, 2012.

[28] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose.
All your iframes point to us. In Proceedings of the 17th
Conference on Security Symposium, SS’08, pages 1–15,
Berkeley, CA, USA, 2008. USENIX Association.

[29] M. Ter Louw, J. Lim, and V. Venkatakrishnan. Enhancing
web browser security against malware extensions. Journal in
Computer Virology, 4(3):179–195, 2008.

[30] A. Zarras, A. Kapravelos, G. Stringhini, T. Holz, C. Kruegel,
and G. Vigna. The dark alleys of madison avenue:
Understanding malicious advertisements. In Proceedings of
Internet Measurement Conference, IMC ’14, Vancouver, BC,

Canada, 2014. ACM.

http://extensiondefender.com/submit.php
https://support.google.com/adsense/answer/1346295#Ads_on_the_same_page_or_site_as_another_publisher
https://support.google.com/adsense/answer/1346295#Ads_on_the_same_page_or_site_as_another_publisher
https://support.google.com/adsense/answer/1346295#Ads_on_the_same_page_or_site_as_another_publisher
http://www.omgchrome.com/malware-buying-google-chrome-extensions/
http://www.omgchrome.com/malware-buying-google-chrome-extensions/
http://www.anti-malvertising.com/
http://www.appnexus.com/
http://extensiondefender.com/
http://lifehacker.com/chrome-protector-notifies-you-if-youre-running-an-adwa-1505371480
http://lifehacker.com/chrome-protector-notifies-you-if-youre-running-an-adwa-1505371480
http://lifehacker.com/chrome-protector-notifies-you-if-youre-running-an-adwa-1505371480
https://addons.mozilla.org/en-US/firefox/
https://addons.mozilla.org/en-US/firefox/
http://thenextweb.com/google/2012/07/03/get-ready-chrome-users-youre-about-to-start-seeing-ads-inside-of-extensions/
http://thenextweb.com/google/2012/07/03/get-ready-chrome-users-youre-about-to-start-seeing-ads-inside-of-extensions/
http://thenextweb.com/google/2012/07/03/get-ready-chrome-users-youre-about-to-start-seeing-ads-inside-of-extensions/
https://chrome.google.com/webstore/
http://nodejs.org/
https://developers.google.com/chrome-developer-tools/docs/debugger-protocol
https://developers.google.com/chrome-developer-tools/docs/debugger-protocol
http://blog.chromium.org/2013/09/saying-goodbye-to-our-old-friend-npapi.html
http://blog.chromium.org/2013/09/saying-goodbye-to-our-old-friend-npapi.html
http://docs.seleniumhq.org/
http://www.anti-malvertising.com/tips-for-publishers
http://www.anti-malvertising.com/tips-for-publishers
https://www.virustotal.com/
http://w3techs.com/technologies/overview/top_level_domain/all
http://w3techs.com/technologies/overview/top_level_domain/all
http://www.benedelman.org/injectors/

	Introduction
	Related Work
	Ad-injecting Extensions
	Ad Injection Practices
	JavaScript Libraries for Ad Injection

	Expector
	Design
	Implementation
	Evaluation

	Studying Malvertising in a Controlled Environment
	Methodology
	Results
	Summary

	Malvertising in the Wild
	Dataset
	Analysis of Ad Networks
	Correlation Between Ad-Injecting Extensions and Malware
	Malicious Ad Conversion

	Conclusions
	References

